
JavaGeom: a java library for geometrical

computations

December 22, 2008

JavaGeom is a library for creating geometrical objects (such as lines, circles,
ellipses, polygons...), getting information on them (length of a curve, number
of points of a polygon...) or between them (get intersection point of 2 lines...),
and manipulating them (a�ne transforms, clipping, compositions...). The aim
of the library is to provide a simple but e�cient tool to be embed in applications
requiring geometry calculations, e.g. vectorial drawing software, computer-aided
design, dynamic geometry, or research programs.

The library is developed using the Java language.
CAUTION: this document is a set of working notes, and may be strongly

outdated.

1

Contents

1 Introduction 4
1.1 Library organization . 4
1.2 Conventions . 4

2 Base classes 5
2.1 Utility classes . 5
2.2 Basic class hierarchy . 6
2.3 Points . 6
2.4 Domains of the plane . 7

3 Curves 9
3.1 Curve hierarchy . 9
3.2 Oriented curves . 12
3.3 Some curve Implementations . 13
3.4 Algorithms on curves . 14

4 Lines and segments 16
4.1 Basic hierarchy . 16
4.2 Implementations . 16

5 Polylines and polygons 18
5.1 Polylines . 18
5.2 Polygons . 18
5.3 Rectangles . 19
5.4 Other polygons . 19
5.5 Algorithms on polygons . 19

6 Circles, ellipses and other conics 20
6.1 Conics . 20
6.2 Ellipse . 20
6.3 Parabola . 20
6.4 Hyperbola . 21
6.5 Classes hierarchy . 21
6.6 Implementations . 21

2

7 Polynomial curves 23
7.1 Representations . 23
7.2 Cubic Bezier curve . 23

8 Transforms 24
8.1 Planar Transforms . 24
8.2 Transform interface hierarchy . 26
8.3 Implementation . 26
8.4 Other transforms . 27
8.5 Algorithms for transforms . 27

9 Planned extensions 29
9.1 Geometric Graphs . 29
9.2 Other models . 29
9.3 Stochastic geometry . 30
9.4 Other geometries . 30
9.5 Other shapes . 30

3

Chapter 1

Introduction

1.1 Library organization

1.1.1 Packages hierarchy

Packages are divided depending on the type of geoemtry used : geom2d for
euclidean plane geometry, geom3d for euclidean space geometry, or geom3s for
spherical geometry. Subpackages could include specialized shape types.

1.1.1.1 Subpackages for math.geom2d

curve hierarchy of curves and of domains

line straight lines and line segments

polygon domains bounded by straight objects

transform a�ne and vectorial transforms in the plane

conic circle, ellipse, parabola and hyperbola, and derived classes

1.1.2 Java version

Java 1.5 for �rst version.
Second version is planned to support generic collections, and to have a more

detailed package subdivision: subpackages 'shapes', 'graph'. main package will
contain interface hierarchy, utility classes, and utility implementations.

1.2 Conventions

We use the convention to call 'XXXSet' collections of objects which are not
linked together, such as a set of points, and 'PolyXXX' collections of objects
which form an other object, like Polyline2D.

4

Chapter 2

Base classes

2.1 Utility classes

Some classes which are not geometrical 'shapes' are needed to represent dis-
placement, angles, or measures made on shapes.

2.1.1 Vector2D

Represents a translation in the plane, without changing orientation angle.

x translation in Ox direction

y translation in Oy direction

Vector2D(Point2D) constructor from a point

Vector2D(double,double) constructor from 2 shifts

2.1.2 PolarVector2D

A class which derives from Vector2D, which can specify the shift in polar co-
ordinates (ρ and θ). Fields x and y are computed accordingly. Note: ρ can be
negative.

2.1.3 Angle2D

This class is an utility class containing various methods useful when working
with angles: add ad subtract angles, by keeping the result between 0 and 2π,
checking if a angle is between 2 others.

2.1.4 Box2D

An isothetic rectangle. Inner �elds: xmin, xmax, ymin and ymax.

5

2.2 Basic class hierarchy

Most classes in javaGeom2d implement the Shape2D interface, which derive in
interfacs Point2D, Curve2D, and Domain2D.

2.2.1 Shape2D

A shape which can be drawn in the plane, i.e. an arbitrary set of points. Shapes
are divided into 3 types, depending on their inner dimension: points (dimension
0), curves (dimension 1) and domains (dimension 2). Each type is represented
by the corresponding interface.

The library handles unbounded shapes like straight lines, parabolas or hy-
perbolas. Some methods are provided to check if a given shape is bounded, and
to clip it if this is not the case.

Methods are available to check if points belongs to the shape, and to compute
distance from point to shape.

2.2.1.1 Abstract methods

contains(Point2D) checks if the shape contains a point.

getDistance(point) computes distance from a point to the shape.

isBounded() return true if the shape can be included in a box big enough.
Unbounded shapes (such as straight lines, parabola, hyperbola...) need to
be clipped before being displayed.

clip(Box2D) returns the parts of the shape which belong to the box. It is
maybe better to provide some clipping methods in Box2D class.

transform(A�neTransform2D) return the shape obtained after the given
a�ne transform. This is useful for designing drawing programs, for which
one can rotate, resize or shear geometric primitives.

2.2.2 EmptySet2D

Special class which allows to return a result as a Shape2D, even when result
is empty. For example: when computing intersection of 2 parallel lines. Need
to decide when this class is useful, or if it can simply be replaced by a null
reference.

2.3 Points

A point is de�ned by 2 coordinate x and y. Two points are equal if they have
the same Cartesian coordinates.

6

2.3.1 Point2D

This is the base class, which extends java.geom.Point2D.Double. While Point2D
is the base class of the geometry, it is preferable that each shape can interact
with java Points as well.

2.3.2 AbstractPoint2D

A proposal for an interface, allowing to consider both PolarPoint2D and Point2D
as implementation of the same interface. Another option is to consider Point2D
as an interface, and implement as CartesianPoint2D and PolarPoint2D.

getX() returns the x coordinate

getY() returns the y coordinate

2.3.3 Point2D.INFINITY_POINT

This is a point located at the in�nity (both coordinate are +∞). It can be used
for giving the result of geometric operations, such as the intersection point of
2 parallel lines. Useful ? -> consider it later, if want to consider projective
geometry.

2.3.4 PointSet2D

A set of points. Distance to this shape is the distance to the nearest point of
the set.

2.3.5 PolarPoint2D

A utility class, used for creating a point from a base point, and a polar vector.

2.4 Domains of the plane

All the shapes that can be �lled. Hausdor� dimension of such shapes is 2.
Boundary is a curve, implementing the Boundary2D interface.

2.4.1 Domain2D

The should be able to locate points (inside, outside, on the boundary), and to
return their boundary.

2.4.1.1 Abstract methods

getBoundary():Boundary2D return the boundary curve or the set of bound-
ary curves of the domain.

7

2.4.2 GenericDomain2D

This is a concrete implementation of a domain de�ned by an arbitrary boundary
curve. Most computations are delegated to the boundary curve.

2.4.2.1 Constructor

Domain2D(Boundary2D) construction using a boundary as argument.

8

Chapter 3

Curves

3.1 Curve hierarchy

The hierarchy of curve interfaces and classes is illustrated on �gure 3.1.

3.1.1 Curve2D

The generic interface for curves in the plane. It actually de�nes parametric
curves. Each point of the curve can be identi�ed by its curvilinear coordinate.
This curvilinear coordinate belongs to an interval [t0; t1], which can be known
by using methods getT0() and getT1().

For non continuous curves, di�erent parametrization. One possibility is to
use [0; 2n−1] where n is the number of curves. For t ∈ [2k; 2k+1], k = 0, 1, ...n−
1, the point belong to the k-st curve. For t ∈ [2k + 1; 2k + 2], k = 0, 1, ...n− 2,
the point is the ending point of a curve, either the k-st or the (k + 1)-st.

3.1.1.1 Abstract methods

getT0():double return the beginning of parameterization domain

getT1():double return the end of parameterization domain

getPoint(t):Point2D return the point corresponding to given parameter

getFirstPoint():Point2D return the �rst point of the curve. Can be an in�-
nite point in the case of an in�nite shape.

getLastPoint():Point2D return the last point of the curve. Can be an in�nite
point in the case of an in�nite shape.

getPosition(point):double compute curve position of a point. Ideally, pa-
rameter is a point belonging to the curve, but it is possible to consider
position of the projection of the point on the curve. Result is comprised
in the interval given by t0 and t1.

9

Figure 3.1: Hierarchy of curves

10

getDistance(Point2D),getDistance(double,double) return the distance to
a point. Not always easy to implement (ex: conics), but this method is
necessary to interactively select a curve.

getIntersections(LinearObject):Point2D[] return intersection points with
a straight line, or a linear object. This function can be used to compute
clipping with rectangle, or even polygons.

[deprecated]getSmoothPieces():SmoothCurve2D[] return smooth curves
which compose this curve. Deprecated, as there is no special use of this
function.

getContinuousCurves():ContinuousCurve[]

getReverseCurve() returns the same curve, but with inverted parametriza-
tion.

getSubCurve(t0,t1):Curve2D method of Curve2D or ContinuousCurve2D.
Extract a portion of the curve.

3.1.2 ContinuousCurve2D

A curve that can be drawn without leaving the stroke out of the paper.

3.1.2.1 Abstract methods

getFirstTangent():Vector2D get the tangent at the �rst point (if de�ned)

getLastTangent():Vector2D get the tangent at the last point (if de�ned)

?getLeftTangent(t):Vector2D return the tangent vector when arriving on
the point (not de�ned for the the �rst point of the curve)

?getRightTangent(t):Vector2D return the tangent vector when leaving the
point (not de�ned for the the last point of the curve)

isClosed():boolean return true if the curve is closed (the �rst point is the
same as the last point).

getSmoothPieces():SmoothCurve2D[] return the set of smooth curves com-
posing the shape.

appendPath(GeneralPath):GeneralPath add the piece of curve to the path.
If the curve is closed, it starts with a 'moveTo()' command. Anyway, it
starts with a 'lineTo()', 'quadTo()' or 'cubicTo()'. This allows to concate-
nate easily continuous curves.

11

3.1.3 SmoothCurve2D

A curve without corners. This is the smallest unit to de�ne curves.
A tangent line and a normal line are de�ned for each point of the curve. It is

possible to draw an approximation of a thick curve by using tangent information
on a set of points along the curve.

3.1.3.1 Abstract methods

getTangentVector(t):Vector2D get the tangent vector for the speci�ed po-
sition

getCurvature(t):double returns the curvature for a point of the curve.

?getNormal(t):Vector2D get the normal vector. Not sure this is very useful
?

3.2 Oriented curves

In a boudary representation of planar shapes, curves are used to determine if
point lie inside or outside the boundary. Several interfaces de�ne the behaviour
of boundary curves (such as straight lines, conics...), or of curves which can be
used as a part of a boundary (such as line segments, coinic arcs...).

3.2.1 OrientedCurve2D

An OrientedCurve2D de�nes an 'inside' and an 'outside'. It is typically a part
of the boundary of a domain. Several OrientedCurve2D chained together form a
ContinuousBoundary2D. One or several ContinousBoundary2D form a Bound-
ary2D.

If the curve is closed, the domain is de�nite. The same if the curve is in�nite
(parabola, line...). For open curves which are bounded, we can consider the
extension of the curve by adding line arcs at the beginning and at the end of
the curve, resulting in an in�nite curve.

3.2.1.1 Abstract methods

getWindingAngle(Point):double return the angle portion the curve turn
around the given point. Result is a signed angle.

getSignedDistance(Point):double signed distance from the point to the curve.
Result is positive for a point outside the curve, negative for a point inside
the curve, and zero for a point on the curve.

?getNormalCone(t):AngularWedge2D return the normal cone of the bound-
ary, towards ouside. Should return an object AngularWedge2D, to be
implemented, de�ned by a Point, a starting angle and a signed angular
extent.

12

isInside(point):boolean return true if the point is located on the 'inside' part
of the curve.

3.2.2 Boundary2D

A Boundary2D is used to describe the boundary of a Domain2D. It de�nes
interior and exterior for every point of the plane. It extends OrientedCurve2D,
and is composed of one or several ContinuousOrientedCurve2D. Each continuous
boundary curve is either a closed curve, or an in�nite curve.

3.2.2.1 Abstract methods

?getWindingNumber(Boundary2D,Point2D):double renvoie le nombre
de fois où la courbe tourne autour du point. Peut être un nombre non
entier (ex: une droite).

?getWindingNumber(Point2D) renvoie le nombre de fois où la courbe tourne
autour du point. Peut être un nombre non entier (ex: une droite).

getBoundaryCurves():ContinuousOrientedCurve2D[] return a set of Con-
tinuousBoundary2D.

?getClippedBoundary(Box):return a curve which is the boundary of the
domain clipped by the given box.

3.2.3 ContinuousOrientedCurve2D

It is both a ContinuousCurve2D and an OrientedCurve2D. The reason of the
existence of this class is to be able to separate the di�erent components of a
Boundary2D. A ContinuousBoundary2D is either bounded and closed, or an
in�nite curve, such as a straight line or a parabola.

3.2.4 ContinuousBoundary2D

same as ContinuousOrientedCurve2D, but implements Boundary2D.

3.2.5 SmoothOrientedCurve2D

A continuous boundary which is moreover smooth. Can be used as a shortcut for
not specifying multiple interface, and to de�ne a continuous oriented curve from
multiple smooth oriented pieces. This is the smallest unit to de�ne boundaries.

3.3 Some curve Implementations

3.3.1 CurveSet2D

A set of curves in the plane. Curves are not supposed to be contiguous.

13

As a CurveSet2D is an implementation of Curve2D, the composition can be
recursive: a CurveSet2D contains one or several CurveSet2D, which contain also
one or several CurveSet2D...

3.3.2 ContinuousCurveSet2D

Extends CurveSet2D, but each element of the set is a continuous curve. Some
processing can be applied if the curve is an instance of a CurveSet2D.

3.3.3 ContinuousOrientedCurveSet2D

Extends CurveSet2D, but each element of the set is a continuous oriented curve.

3.3.4 BoundarySet2D

An implementation of a Boundary2D. This class provides an e�cient way to
de�ne a planar domain by a set of ContinuousBoundary2D. This class has the
same behaviour as CurveSet2D, but contains only ContinuousOrientedCurve2D.
Name could be ContinuousOrientedCurveSet2D.

3.3.5 PolyCurve2D

Basically the same as a CurveSet2D, but it contains only continuous curves,
and each curve is connected to the following one. This class implements Con-
tinuousCurve2D. It is di�erent from CurveSet2D, as curves are not linked in
CurveSet2D. Maybe add an interface AbstractCurveSet2D, with getCurves()
method ?

3.3.6 PolyOrientedCurve2D

A continuous curve, composed of smooth oriented curves. This class extends
PolyCurve2D, and implements ContinuousOrientedCurve2D.

3.3.7 BoundaryPolyCurve2D

A continuous set of oriented curves, which de�nes a domain.

3.4 Algorithms on curves

3.4.1 Clip a Curve Set

Consider clipping with a box, i.e. an isothetic rectangle.
for a curve set, recursively clip each curve of the set, and add to a new

CurveSet2D

14

3.4.2 Clip a Boundary2D

The same, but the result is a Boundary2D. need to take care of order of clipping.
Idea: compute intersections, order intersections, then link intersection on

the edge of the box.

3.4.3 Point in PolyOrientedCurve2D

There are two possible algorithms: either use a variant of ray intersections count,
or use orientation with respect to the closest oriented curve composing the set.

3.4.4 Length of a Curve

For many simple curves (e.g. circles, circle arcs, polylines), there is an explicit
formula for computing there length. For a generic smooth curve, the use of a
derivative allows to compute length of any curve by numerical integration. Need
to specify tolerance limit.

15

Chapter 4

Lines and segments

4.1 Basic hierarchy

A straight object is an object which can be embedded in a Straight line. There
are 3 straight objects in javaGeom: straight lines, line segments, and rays. A
more generic class called 'LineArc2D' is used, which can be derived in each of
these three classes.

4.1.1 LinearShape2D

The interface for all objects which can be embedded into a straight line. Maybe
could be renamd as LinearShape2D ?

getSupportLine():StraightLine2D return the supporting line

4.1.2 AbstractLine2D

This abstract class gathers most of computation for classes like straight lines,
line segments, and rays.

4.2 Implementations

4.2.1 StraightLine2D

A specialization of AbstractLine2D.

4.2.2 LineSegment2D

A specialization of AbstractLine2D.

4.2.3 Ray2D

A specialization of AbstractLine2D.

16

4.2.4 LineArc2D

It is de�ned from an origin, a vector, and the 2 limits of the parameterization.

4.2.5 LineObject2D

A line object is de�ned from 2 points. Properties of the object, such as vector
or length, are computed from point references each time methods are called.
This is a littl bit slower than line arcs, but allows to change line by changing
the reference points.

17

Chapter 5

Polylines and polygons

5.1 Polylines

5.1.1 Polyline2D

Polyline is a set of points which describe a curve composed of several line seg-
ments. It is typically the boundary of a polygon.

getLineSegments()

getLength() sum of the lengths of each line segment.

5.1.2 ClosedPolyline2D

A specialization of PolyLine2D, dedicated to represente boundary of simple
polygons.

5.2 Polygons

5.2.1 Polygon2D

Interface for polygons, which concerns all Domain2D whose boundary is com-
posed uniquely of line segments.

getVertices():Collection<Point2D>

getEdges():Collection<LineSegment2D>

5.2.2 SimplePolygon2D

A polygon de�ned from an array of points. The boundary of a simple polygon
is a closed polyline (a �ring� in JTS).

18

5.2.3 MultiplePolygon2D

A general Polygon 2D can be composed of several disjoint parts, and can con-
tains holes. The boundary of a Polygon2D is a set of closed polylines.

5.3 Rectangles

5.3.1 Rectangle2D

De�ned from a corner, width and length, and orientation.

5.3.2 CenteredRectangle2D

de�ned from a center, width and length, and orientation.

5.4 Other polygons

Square2D ? RegularPolygon2D ? IndexedPolygon2D ?

5.5 Algorithms on polygons

geometric operations: union, intersection, subtraction of polygons
Minkowski sum of polygons
computation of (signed) area and of perimeter length
clipping of polygon
triangulation of a polygon
convex hull of a set of points.

19

Chapter 6

Circles, ellipses and other

conics

6.1 Conics

The general equation for conics in the javaGeom2d libary has the following form:

ax2 + bxy + cy2 + dx+ ey + f = 0

6.1.1 Conic types

Types of conics are ellipses, parabola and hyperbolas.

6.2 Ellipse

algebraic equation of an ellipse:

x2

a2
+
y2

b2
= 1

6.3 Parabola

6.3.1 Representation

We use the following representation:{
x(t) = t
y(t) = at2

, t ∈ R

20

6.4 Hyperbola

composed of 2 branches
Algebraic equation of an hyperbola :

x2

a2
− y2

b2
= 1

6.5 Classes hierarchy

An interface Conic2D, and 3 subclasses : Ellipse2D, Parabola2D, Hyperbola2D.
The class Circle2D inherits Ellipse2D. The class Hyperbola2D contains two in-
stances of HyperbolaBranch2D.

Arcs of conics are implemented in 4 classes : EllipseArc2D, CircleArc2D,
ParabolaArc2D and HyperbolaBranchArc2D.

6.6 Implementations

6.6.1 Conic2D

This is the interface for all conics. This interface provides methods for accessing
conic type (ellipse, parabola), and conic parameter (center, focus, direction
vectors...).

Conic2D is an extension of OrientedCurve2D, not of ContinuousCurve2D.
This is due to the fact that hyperbolas are decomposed into 2 branches.

6.6.2 Ellipse2D

Implements ContinuousOrientedCurve2D, and SmoothCurve2D.

6.6.3 Circle2D

A circle inherits Ellipse2D.

6.6.4 Parabola2D

Implements ContinuousOrientedCurve2D, and SmoothCurve2D.

6.6.5 Hyperbola2D

An hyperbola is composed from 2 branches. Therefore, a general class Hyper-
bola2D can be de�ned as an implementation of OrientedCurve2D, which refers
to 2 HyperbolaBranch2D, which are implementations of ContinuousOriented-
Curve2D.

21

6.6.6 EllipseArc2D and CircleArc2D

A cheap implementation is to keep a reference to the supporting conic, and to
add tests speci�c to angle management.

A reference to the support conic (ellipse or circle) is kept as member. Bounds
of the arc are speci�ed by the start angle and the angle extent. The arc is direct
if the angle extent is positive. endAngle is simply startAngle+angleExtent. The
bounds for parameterization are given by t0 = 0 and t1 = |angleExtent|.

An ellipse arc or circle arc can be created by specifying either start angle
and angle extent, or bounding angles, but in the latter case one have to specify
whether the arc is directed or not.

6.6.6.1 Constructors

EllipseArc(Ellipse, start, extent)

EllipseArc(Ellipse, start, end, direct)

EllipseArc(xc, yc, r1, r1, theta, start, extent)

EllipseArc(xc, yc, r1, r1, theta, start, end, direct)

22

Chapter 7

Polynomial curves

A quite common way used to describe abritrary curves. Di�erent representations
exist.

7.1 Representations

7.1.1 Polynomial curves

Parametrization of each coordinate is simply given by the suites of polynom
coe�cients.

7.1.2 Ferguson curves

They use Hermite representation: coordinate of extreme poitns, and derivatives.
Usually de�ned for degree 3, coe�cients for higher degrees are less intuitive.

7.1.3 Bezier Curves

De�ne a curve by several control points.

7.1.4 NURBS

Extension of Bezier curves, allow exact representation of conics.

7.2 Cubic Bezier curve

Currently only cubic Bezier curve de�ned by 4 control points is implemented.

23

Chapter 8

Transforms

Need to think a little bit further on transforms hierarchy, and on implementation
of A�neTransform.

8.1 Planar Transforms

8.1.1 Translation2D

A translation is an isometry, a motion, and a direct transform.
If vx and vy are coordinates of the vector v, the transform is expressed as:

Tv =

 1 0 vx
0 1 vy
0 0 1


The composition of wo translations with translation vectors (x1, y1) and

(x2, y2) is another translation with translation vector (x1 + x2, y1 + y2).

8.1.2 Rotation2D

A rotation is a motion, a direct transform and an isometry.

8.1.2.1 Matrix representation

If θ is the angle of rotation, the transform matrix is as follow:

Rθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


For a rotation around a point c = (cx, cy), the transforms becomes:

Rc,θ = TxRθT−x =

 cos θ − sin θ cx (1− cos θ) + cy sin θ
sin θ cos θ cy (1− cos θ)− cx sin θ

0 0 1



24

8.1.2.2 Compositions

The composition with another rotation whith same center, is a new rotation,
whose center is the same as the two rotations, and whose angle is the sum of
the two rotation angles.

Rc,θ1 ◦Rc,θ2 = Rc,θ1+θ2

8.1.3 Homothecy2D

Is a similarity. Is direct if factor is positive.
Homothecy around origin by a factor s:

Hk =

 s 0 0
0 s 0
0 0 1


Homothecy by a factor s around a given point c = (cx, cy):

Hc,s = TxHsT−x =

 s 0 (1− s) cx
0 s (1− s) cy
0 0 1


8.1.4 Scaling2D

Similar to homothecy, but scaling coe�cient is not the same in each direction.
Then, this is not a similarity anymore.

For a scaling with coe�cients s1and s2, matrix is expressed as

Sc,sx,sy
=

 sx 0 (1− sx) cx
0 sy (1− sy) cy
0 0 1


8.1.5 LineRe�ection2D

Re�ection about a line. Is an indirect isometry.
Note: to be implemented in StraightLine2D class.

8.1.6 PointRe�ection2D

Symmetry around a point. Is an isometry.
Note: to be implemented in Point2D class.

25

8.2 Transform interface hierarchy

8.2.1 Transform2D

can transform any point to another point, or an array of points. Preallocation
must be considered for arrays, and di�erences between java and javaGeom kept
in mind.

transformPoint(Point2D):Point2D

transformPoint(Point2D,Point2D):Point2D

8.2.2 Bijection2D

Transforms which can be inverted. interface which extends Transform2D.

getInverse():Bijection2D return the inverse transform

8.2.3 LinearTransform2D

Tranforms which can be represented with a matrix, such as a�ne transforms or
projective transforms. Such transforms preserve alignment of points.

8.3 Implementation

8.3.1 A�neTransform2D

Tranforms which can be represented with a 3 × 3 matrix. Such transforms
preserve parallelness of lines. A transform can be modi�ed by concatenating
with another transform.

A�neTransform2D is given as a class, and is immutable.

getMatrix():double[][]

abstract getCoe�cients():double[]

transformVector(Vector2D):Vector2D

isMotion():boolean if transform is the composition of a translation and a
rotation

isIsometry():boolean if transform keeps the unsigned area of the transformed
shape unchanged.

isSimilarity():boolean if the transformed shape is the same as the original
shapes, up to a scaling factor.

isDirect():boolean is true if transformed shapes keep the same orientation

getAsAwtTransform():java.awt.geom.A�neTransform

26

static createRotation(...):A�neTransform2D same as in java class

setToXXX(...) set transform to the transform XXX, with speci�c parameters.

8.4 Other transforms

8.4.1 ProjectiveTransform2D

Transforms a quadrilateral into another quadrilateral, without preserving paral-
lelness. This is a superinterface of A�neTransform2D, and extends Bijection2D.
In the case of a�ne transforms, it preserves parallelness. Can be represented
with a matrix, but needs homogeneous coordinate.

getProjectiveMatrix return a 3× 3 array of double

8.4.2 LinearTransform2D

A transform which can be represented using a matrix. A little bit more general
than ProjectiveTransform, as perspective projections can also be represented
using matrices.

8.4.3 CircleInversion2D

maybe subclass of linear transform. Think about it...

8.4.4 Projections

Project points on a line, a circle, or another shape. Some ones can be repre-
sented with a matrix (orthogonal projection). extends Transform2D, but not
Bijection2D.

8.5 Algorithms for transforms

8.5.1 Computing inverse of a matrix

Suppose marix A is given in the form

A =

 m00 m01 m02

m10 m11 m12

0 0 1


Then, inverse A−1 of matrix A is given by

A−1 =
1

m00m11 −m01m10

 m11 −m01 m01m12 −m02m11

−m10 m00 m02m10 −m00m12

0 0 1



27

8.5.2 Test if a�ne transform is a similarity

We need to check if matrix is orthogonal. Apparently, It is enough to check that

m00m01 +m10m11 = 0

8.5.3 Test if a�ne transform is a motion or an isometry

First computes the determinant of the matrix. It equals 1 for a motion, and its
absolute value equals 1 for an isometry.

28

Chapter 9

Planned extensions

9.1 Geometric Graphs

9.1.1 GeometricGraph2D

By 'geometric graph', we consider graphs whose vertices are points. It is an
instance of Shape2D.

provides methods for accessing vertices and edges. maybe faces.
need exterior library for this. Jung ? JGraphT ?

getEdges():Collection<ContinuousCurve2D>

getVertices():Collection<Point2D>

9.2 Other models

9.2.1 Polynomial curves

Each coordinate is de�ned by a polynomial. Derivatives and normals are easy
to calculate, but need maybe some library to handle polynomials.

9.2.2 Lissajous curves

Same as polynomial curves, except the model is di�erent.

9.2.3 Fourier contour

Useful for studying the contour of real objects. Such model can have practical
application.

29

9.3 Stochastic geometry

implement creation of random shapes, such as point processes, line processe,
boolean models...

need e�cient statistics library.
Idea is to create a stochastic process, whose realizations are shapes.

9.4 Other geometries

9.4.1 Spherical geometry

9.4.2 Hyperbolic geometry

9.4.3 Projection/Cartography

9.4.4 Projective geometry

9.5 Other shapes

9.5.1 Fractals

Need to have a more general interface system. Maybe as a di�erent set, which
can produce instances of Shape2D for di�erent level of iteration (for iterated
fractals).

9.5.2 Federer sets

9.5.3 Topological properties

This type of shapes should be able to make a di�erence between a set, its closure,
and its interior.

9.5.4 In�nite spirals

Some bounded shapes can have in�nite parametrization.

30

	Introduction
	Library organization
	Conventions

	Base classes
	Utility classes
	Basic class hierarchy
	Points
	Domains of the plane

	Curves
	Curve hierarchy
	Oriented curves
	Some curve Implementations
	Algorithms on curves

	Lines and segments
	Basic hierarchy
	Implementations

	Polylines and polygons
	Polylines
	Polygons
	Rectangles
	Other polygons
	Algorithms on polygons

	Circles, ellipses and other conics
	Conics
	Ellipse
	Parabola
	Hyperbola
	Classes hierarchy
	Implementations

	Polynomial curves
	Representations
	Cubic Bezier curve

	Transforms
	Planar Transforms
	Transform interface hierarchy
	Implementation
	Other transforms
	Algorithms for transforms

	Planned extensions
	Geometric Graphs
	Other models
	Stochastic geometry
	Other geometries
	Other shapes

