H2 Database Engine

Version 1.1.102 (2008-10-24)

1 of 144

Table of Contents

L W D= o T T = To = PP PR 1
(@ U1 < = o PP UPPUPION 11
Embedding H2 in @n APPlICALIONuuuiiiiiiiiii 11
I L=l P e aTSTo] (Y o] o] [Tr= o PPN 11
Y= 010] (=T o PRSPPI 11
INSEAIIATION .ttt 11

ISy Ll g T O] o PP PPPPPPPPPR 11

OGN e 12

ST 0] =P 13
< oL PP 14
3100 1= o 15

0 T PPN 15
1S3 =] = o o PPN 16
RS [0 =T 0 T g 16
Y0 0] Te] g =Tl = = 1u {0 TP PPPPPPPPORN 16
INSEAIlING TNE SOMIWAIE 1u.uiiii it e b a e e s e e e e ee s s st e e e e e e e e naaan s e e e e e e eaaeennnanen 16
D= 010] o T] PP 16
LIV Lo =1 PP PP PP PPPPPPPPPPPPPPPPPRIN 17
Starting and UsiNg the H2 CONSOIEccooiiiiiiie e 17
1= | PP UPTTPR 17

N = LYY T] T) o PP 18
1= 1 T TN = 1V PP 18
ErrOr MESSAgE "POIT IS 1M USE" .reeveeesteeereiesneessssssnssessssssssssssssssssssessssseeesessses e ses e e es e e e e e e ee e e e e e e e e £ e e e e e ee e eee e e ee e e eeenenennnnnnnnnssnn 18

L0 LT T =T g0 g 1< gl oo o 18
SEATING SUCCESSTUILY ..vieiiiiiiiei i i ettt e e et e e e e e e et e e s e e e e e e e e e e s e e e e e e e e e e b s s e e e e e e e e s saa e e e e e e eaeaa e e e aaneeanraeen 18
Connecting to the SErver USING @ BIrOWSELuuuuieiiiiiiiiiiiiiie e s e e e cesssss s e s s s e et bars e s s e e e et et b s e s e s e e e aaaaa e e e e s s eaeba e e eaaeeeannaeen 18
MUIEIPIE CONCUITENT SESSIONSuuuuussiussnsssssssssssssssss s8R s e s e e n b n e e e 18
APPIICAtION PrOPEITIEScoiiiiiiieee e 18

o T 1| o PPN 19
Lo N =TT Y= T =T PPN 19
AdAING DAtADASE DIIVELSuereiiiieiiiiiistrreeeaaeessasserreeaessssasssseeeeaesssaansaseeeeassasasns s e ee e e e e s easannnseeeeeeeseasnnnnnneeeeseeeensnnnnnnn 19

L0 LY g To R g T AT o] =L o] o OO 19
Inserting Table Names or COlUMN NAMESccooviiiiiiiiiirr s s s e e s e e s e e erenes 19
[DI{e] g (<Toiul Yo R=Tala S]] o] o] g e I p Y=Y o] o] =1 o o PP 19
Connecting t0 @ DAtabase USING JDBCuuuuuuuuuruunsuunssnnssnnssunssnssssnssssssnsssnnsssssssnsesens 19
Creating NEW DatabaSEScuuiiiiiiriiiriiriiiiiiiiieiieereeerreereerreerrrrerrrrrrrrrrrerererree e e eeeeeeeee e s ee e e e s ee s e e e s e s e eeeeeenneennenns 20
USING T SEIVET ... 20
Starting the Server from COMMANG LINEcooeriiieieeeeiiiieei e e e e e e s nree e e e e s s s s e e e e e e e s s mnnnneeeeeees s nnnneeeeeseessnnnnnneesenes 20
CoNNECEING T0 TNE TCP SEIVET ...uiiiiiiiiiiiiee e e e ettt e e s s e e e e e e e et e e r e e e e e e et e e s e e e e e e e e e s s e e e e e e e e e baaeeseeeeenssaa e eennnanen 20
Starting the Server within @an ApPPlICAtIONciiiiieiiiiiii e e e e e s e e e e e e e e e e e e e r e e e e ren 20
Stopping @ TCP Server from ANOTNEI PrOCESSuvreerreriiiiirseeriaaesassassssseesassassssssessassssssassssessesssssssnssssessssssasasnnenes 21

L0 E g o o 10T = o RTI 21
(0[] To Ko o] M | = el €] =11 = o PP 21
Using Databases in Web APPIICATIONS ... e e e e e e 21
EMDEAAEA MOGE ... e 21

ST Y=l 1 o T L= PPPPPPN 22
Using a Servlet Listener to Start and StOp @ Dat@baseeeeeeeirreermiimmiiiiiiriiieieeereerreesreereeeeeeeeeeereeereeeererereereerssnsaees 22
CSV (Comma Separated ValUES) SUDPPOITuueuueeuueeereerreseusssresssnnnsnnssens 22
Writing @ CSV File from Within @ Dat@basSec.ieieeiuuiiiiiiiiicciiiiis et e e e e s e e e b e s e e s e e e eans 22
Reading a CSV File from Within @ Dat@baseuuiiiiiiiiiiiiiiii et e e e e e r e e e e e e e e b e e nna s 23
Writing @ CSV File from @ Java APPICALIONoeeiiiiiieeieiee e e e e e e e e e e s s e e e e e e e s s nnnn e e e e e s e e s snmnnnnneeeeseesnnnnnn 23
Reading a CSV File from @ Java APPIICALIONeeeieiiiiiiiiieeeeee e e erssree e e e e e e s e e e e e s e s ssssnnnreee e e e e s snnnnneeeeseeeeensnnnnnsnneeess 23
Upgrade, Backup, @NA RESTOIEiiiiiiiiiiiiiieiieeeeiiiiis s s e s e e rs s s s s s e e e e s e e s e s e e e e e s e e e e e e e ee s s s e e e ae s e eessaaeeeeeeeen s s e eeeeennnnnas 23
(D =0T KSR o o] = o [P PTRTPPR RPN 23
Backup USING the SCIIPE TOOuuieiiiiiii it e e e e e e e e e s s s s s e e e e e e e s s s nnnre e e e e e e e eeeeeennnnnnn e e neas 23

LR (T o] . IR o TP 24
(011 L= 7= T B o PPN 24
COMMEANG LINE TOOIS ...t R s s sn s R e e e e 24
USING OPENOTTICE BASE ..vuvvuurruuurunrnuuunuussuusuusssunssusssusssssssanssssssssssasssssssssssss s s sss s sss 5888888858888 88 8888888888808 8 8888888800 eHee e bn b e e e e en b s 24
1Y BT LY TR = L o 0 P 25
USING @ CONNECEION POO ... e e 25
FUIIEEXE SEAICR . 26
Using the Native FUIl TEXE SEAICN ...cuuuuuiiiii i e e e e e s e e e e s e e e e e e e e e e e eaa e e ran e e et e aennanas 26
Using the Lucene FUIEEXE SEAICHccuuuuiiiii it e e e e e s e e e e e e e e e s s s e e e s e s e e et e e enna s 26
User-Defined Vari@blESeeeeiiiiiiiiiiiii et e e e e s s s s e e e e e e e s e s s nrae e e e e e e e e e R rRe e e e e e e aaanaaaeaaaaaarnns 27
DAE @NA TIMIE iiiieiiieei s rr s s s s s s s s s e s e s s e e s s s e s s e e s s e e e s e e e s e e e s e e e s e e e e aeesaaesaaesaessaaasaaaeaaasaaesaaaeaaesaaasaeaeaaaseeeeeaeeeeeeeeernnanns 27

2 of 144

LTS L =N 28

2= L 1) PP 28
N T T TP 28
Ao (o a0 =T =T | =P 28
(] @] I U0 oo 1 PP SPPR PP 29
SECUNIEY FOATUIES 1uuniiiiii i et s et e s e e e s e e e e e e e e e e e e e e ea e e e e ea e e eea e e e e s e e e e e e e e e e b e e e e na e e e enn e eennneennenns 29
Other FEAtUres @nd TOOIScevuuueiiiiiiiiriiee s e e e e errra s s s s e e e e eesssa s s s s e s eerr s s e e s eeeeeessaa s eaeeennnsssanseeeseerssnnnssseenennssennnrenen 29
] 1 2= 29
Comparison to Other Database ENGINEScceuuuuiiiiiiiiiiiiiiiie s s e s e e s s s e e e e sse s s e e s e e e s s a e e e s eeeeen s s e eeaeeennnnnnneenen 29
(D=0 a= T o I 1 0 30
[DE1a{olel11B]aI=Ta e O a1ty b o R P TP T TP O PP PPPPRRPPIN 30
o/ o PP 30
[1A T L PP 30
(@(oT g1 aT=Toiu o] o TN 14T T [T O PPPPPPRR PPN 31
EMDEAAEA MOGE ... e 31
REMOLE MOE ... e aaes 31
5= I 1 o T [P OTERPTT 31
DAtaDaSE URL OVEIVIEW ...vvuuueesiieeiierrisssseseeeesnssssssssssrsssssasssssesesssasasssasesssssssssssssssnnssnsssssseesennsssnssssseessnnnsnsensnnsennnseennns 32
Connecting to an Embedded (LOCAl) DAt@baSeiieiiiieiiiiiiiiiiiiiceeriiie s s st e s s s e e e e s e e s s e e e raaaa e e e s s e e e nb s e e e s e e enneaeen 33
MEMOIY-ONlY DAtADASES ...eeevrruuuiiiiiiiiiiitiiie e e e e et s e e s e e e e eaa e e e e e e e et s sr e e e e e e e ee s s e e e e e e e e e e s s R e e e e e e e e e s a s e e eee e e e e e b neeeeeeernns 33
Connecting to a Database With File ENCIYPLIONc.uuueeiiiiiiiiiiricie e e e e e e e e s s smnr e e e e e e e s s snnnnnnnnnan 33
(D=1 = o= Ty L o T (T PP 33
Opening a Database ONly if it AIF€AAY EXISESuuuuururrruerreurreerreerseesreeereesreesssesrssessssssesssssssesssssssssssessssssssssssssssssssssnessnnnseens 34
(@[1] 1a o R u a T D =] o= LR 34
Delayed DatabasSe ClOSING ..vveererrererrrrrrrereereerrrreeeeeerreerereererrererrrrrrerrrrrrrrr ettt trettretrerteeetrenesnsneseenssnnesens 34
Don't Close the Database When the VIM EXItScuiiiiiiiiiiiiiiiiiicciiees ettt a e s e s e e e s s e e s s e e s e e e s s e e e e e 34
LOG INAEX CRANGES ... e e e b e e e e e 35
Lo =¥ g1 g 01V Y= e [P PPT 35
Changing Other Settings when Opening @ CONNECHIONuuuuiiiiiiiieiiiiirs et e e e e e e e e e s e e e r b e e s s e eaaeaeen 35
CUSEOM Fil@ ACCESS MOUE ...ceeeeiiiiiiiiiiiiiiieiteeeetetteeeeeeeeeeeeeeeeeeeeeeeeee e e e ee e e e e e ee e e e e e e e e ee s ee e e e e e e e e e e e e e e ee e e e en e e e e e eenneeennnn 35
MUIEIPIE CONNECEIONS ... e e e e b e e e e e 36
Opening Multiple Databases at the SamMe TIME ..o e enes 36
Multiple Connections to the Same Database: ClENT/SEIVETciiiiiiiiiiiiiii et e e s e e naa s 36
T8 a1 pTg=t= o [aTe RSN] o] o o o b OO PRRPPPRPTTPR 36
Locking, LOCK-TimeEOUL, DEAAIOCKSceeeiiiiiieiieii ettt e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e rraneaaes 36
=1 e=] o= Ty L = Yo T | U 36
Moving and Renaming Database Filesooooiiiiiiii i 37
(572 o] (U o 37
[T T 1 T J= Vo I =01V U PPP P 37
(@00 497011 1111 Y2 PP PPPPPPPIRS 38
ComMPAIDIlITY MOUES ... e nan 38
PostgreSQL Compatibility MOAEcooiiieiieee e e e e e 38
MySQL COMPAtiDIlITY MOGE ..evvvuuiiiiiieiiiiiiiis st r e s s e e e e e e e e e s e e e e e s e e e e e e e e e e b e e e s e e e e e s s naareeeesaneee b e ennnnas 38
HSQLDB ComPpatibilily MOGE ...ceuuuuiiiiiiiiiiiiiis et e e e e e e e e e s s e e e e e e e r e e s e e e e e e s s s e e e e e e e eanaaneeeeeeee s eennnnas 38
MS SQL Server Compatibility MOGEccuuereeiieiiiiiiirii e i e e e e e e e s s s s e e e e s s e s snra e e e e e e s e e e e eeeeennsnnnnnnseneas 39
(D= 0) A @0 T o= LuT o] 1720 N T 1= TP 39
(0] = ol [N @o g4 0=] o] 18720 1 oo [PPSR P PP PPRPPP PPN 39
F AL Lo U= 0o T PP 39
AULOMALIC MIXEA MOE ... e e e e e e e e e e e nnn 39
USING the Trate OPLIONS ..eviieiiiiiiiiiiiiiiieeiieetiee sttt et teereee ettt et e st et sttt e et e e et teetteetttettaettatttattttatteetteatteetteetteettesrnsansaeernnnnns 40
TrACE OPLIONS ..o 40
Setting the Maximum Size Of the Trace Fileccoco oo e e eees 40
=N W @o T [€= [T - o o RO PPPPPP 40
Enabling the Trace Option at Runtime by Manually Creating @ Fileoooiiiiiiiiiiii i 41
L L1 T I g L= g e T o 1 T Y (PP 41
REAd ONlY DAtADASESccieeiiieiiii i e 41
Read Only Databases iN ZiP OF JAr FilEciiiieiiiiiiiii et r s e s s e e e e e e r s e e e e e e e e anan e s e e e e e e e e saa e e e e eeeennrnanns 41
Binary and TexXt STOrage FOMMALSicceuuruiiiiiiiiiciriiiee s e s e e e e e e s e e s s e e e e e e e e e s e e e e s s e e e e e e e e e e e s b e e e e e e e enna e e ranneernas 42
Graceful Handling of Low Disk SPace SItUALIONSueeiiiiiiiiiirieiiiee e e e e s s ssisr e e e e s s s snnnne e e e e s s s s nsnnnnr e e s s e e s e eeensnnnnnan 42
Opening @ Corrupted DAtADASEccueeiiiiiiurrririeieiiirreer e e e s s s ssrer e e e e e s s s ssssreee e e e e s sssannsse e et e e s s aassnnnnneeaeessanannnrnneaesaseeenes 42
Computed Columns / FUNCEION BASEA INAEXuuuuuuuriuniiiiuiiiiiinins s s nsnsssnnsnnnnnneeene 42
MUIEI-DIMENSIONAI INAEXES ...vvieereruriisiiisiierrriiss s s s e srerrr s s e s e ssseesssrseeasserssss i aeseeesee s s s aeseeeeees s s aeaeeeennnnannreeesennnnnnnnnennns 43
USING PASSWOITS ...ttt n e e e e e s 43
USING SECUIE PASSWOITS ... s e e 43
Passwords: Using Char Arrays iNStead Of SEMNGSccuereeereiieiairiereee e e e es s e e e e e s s s snnee e e e e e s e e s snnnn e e e e e e s sesmnnrneneeaseneeeas 43
Passing the User Name and/or Password in the URLcuuuuiiiiiiiiiiiiiiis s eseseerssses e s s s seerss s s s s seeessnnas s s s srnnsessnsssnnnnas 44
User-Defined Functions and Stored ProCEAUIEScooiiiiiiiiiiiiiiis s s e e e enn s 44
(¥ aloiuTe] gl D= = I Y/ o TSI\ =T o] o] 1V [P UP PPN 44
Functions that require @ CONNECEIONuuiiiiiiiiiiiii e r e s e e e e e e s s e s rr e e e e e s e s s nnnnn e e e e s e es s neeeas 44
FUNCtions throwing a@n EXCEPLIONciiiiiuiiiiiiiei e e e e e e s e e e e e e s s s s sn e e e e e e s e e s s mnra e e e e e e s e e aeeeeesnnnnnnnnsnnness 44
FUNCHONS retUINING @ RESUIT SEEuuieiiiitiiiiiietiietiietiise bbb s et ss e sss st st ss s s s s s s s s s s s sns s smnennn s e e e ennnnnaes 44

3 of 144

USING SIMPIERESUIESEL ...eviiiiiiiiiiii ettt et e e e e e e et e e e e e e e e e e e et et et e e e aaeateeaaeeataaaaaeaaaeaaaes 45

Using @ FUNCEON @S @ TaDIE .ccooeiieecc e 45

LI 10 1= £ 45
Compacting @ DAADASEccoveeiiiiiiie e e 46
(02T o TSI T= 3T L PP RPN 46
(=g (o]t a0/ TP PP PP PRSP 47
PerformanCe COMPATISONuueeeeeeeraaiasreeereaassaaassereresassaassseeeeaesessaansseeeeaessasaasssseeeeeessasannssneseesssasannssnnessssssnsnnnenessenses 47
4] <o Lo [T PP 47

L0 1= ST T 47
Benchmark Results and COMMENTSuuuiiiiiiiiiiiiirri i 48
PP PUPPPPNN 48
HSQLDB ... e e e e e e e e e e e e e e e e a e e e e e e e e e arraa, 48

[T 4)T PTN 48
L0151] =1 | TN 48
YA PO PPPPPPPPPPPPPPPPN 48
L1011 PP PPPPPPPPPPUPPPPPN 49

Why Oracle / MS SQL Server / DB2 are NO LISEEAcvvvuuieeiieeieieiiiise s s eeeeeesie s e s s s e rrrnns s s s s e s rerrnns e s s s s eeeenn s eennsanes 49

Ao To T Lo T 7= 0T g = PP 49
NUMDET Of CONMMECTIONS ..1vttvvtttstttsstuestsesssssssssssssssssssssssssssssssssssss s s s ss s s s 8885558 s 5888585558855 8 8588555885500 8 50 e s s s e e e e e nnennnennnn 49
REAIFWOIIA TESES ..o 49
Comparing Embedded with Server Databasesceeeeeiiiiiiiimmeriaee i e e e s re e e e s s s s smnraeeeaeseeeeas 49

JLIC=ES o =10 PP PPTPE 49
O] o E= W g PPN 49

LN TT 0 0T Y= T T 49

(DL =Y =Ta @] 0= = o 3 TN 49
R0 Lot u T A T o 4T o oY1 A T =T o 1 N 50

Using Prepared STatemMENTSoooiiiiii i 50
Currently Not Tested: Startup TIiME ... e e e e n s e e e e nn s 50
POIEPOSITION BENCAMAIK ... e 50
P o]0 [Tor= T To] T = o} 1 1T [P RRP P 51
L 1Y) PP PPPRPPT 51
=1 t=1 o= TSy o) 1o U 51
Database PerfOrmanCe TUNING cuuuu..iiiiieeeeeeriiesee st e erssses e s s s s s e ers s s s s e e e eeesaa s e e s e e e e s aaa e e e ee e e e e s s s aaeseeeeene s s e eaaeennnn s e rnnneernns 52
BT R 0r= 0] =) 52

L0 LT gTo R g T I = ol O o) T 3T 52
g0 TG U T PP 52
(070110 12~ ST PPN 52
(=01 =ST 0] g T @ o] .1 4= 1o o H PP PTP PP P PP PP 52
(@010 \V I G O o] 012 1 o] o S URPP PN 52
Updating Optimizer Statistics / ColumN SEIECHIVITY ... e 52
(O8] g1 P= 1ol T =t] 0] (<= PPT PPN 53

A6 V7] T = I o] PP 54
RESUIE SEES . e e e e e e e e e nn s 54
Limiting the NUMDEE Of ROWSiiiiiiiiiiiiiie et rses e s e s e e d s e e s s e e et ea s s e e s s e e e e aaa e e e eee e e eeaa e e eaa e e ran e e et e nnnnas 54
Large Result Sets and EXtErNal SOMTINGeeeeeiiiiiiiriiiiiie e e e e e e e s s s nn e e e e e e s s s snnnn e e e e e e s aaanneeeas 54
=T o T @ <o £ TP 54
Storing and Reading Large ODJECESoiciiieiiiii i s s e e e neeen 54

[g1 CTa B] [PPSR 55
TrANSACION ISOIATION ...uuuiiiti e e e e 55
LI oL Y= ool T PP PPPPPT 55
0T I 3= T | PR 56
Multi-Version ConCUrrenCy CONEIOl (MVECC) ...veuureurseereeerenesessnsssessssnnssesennnnss 56
Clustering / High AVAIlabilifyiiiiiiiiiiiee e e e e e e e e s e e e e e e e e s e e e e e e e e e een 56
USING the Creat@CIUSTEr TOO ..iuruuuiiiiiieieiititis e s e et et e e e e e e e e e e ee s s e e e e e e ee s e e e e e e e e et b s e e e s e e e eenasaa s e ean e e et e ennnas 56
Clustering Algorithm and LImitations ... 57
BNV 0 TN =TT] 0 T PP 57
(@(o] 497711 1111 PP PPPPPPRPORN 57
Transaction Commit when AUtOCOMMIE IS ON uuuviiiiiiiiiiiiiir 58

LG AT 0 (o E A S EtoT=T Y=o R o] s = O 58
(5= a0 = 0 S o] ' o)1= g ol PP PPN 58
RUN @S WINAOWS SEIVICE ..evvvruuiiiiiiiiiirrsuaessssssssssssssssssssssssssssssssssnssssssasssessess s aasseeeses s s s seeeeeenennss s eeeseenesnnnnneeeeennnnns 58
LTS = || B o LT VTl PPN 58
S | g gL Y Tl PP P PP PPPTP PP PSPPI 58
(@o] o oL Totu (o I g LI o B oY=l PP PP PSPPI 58
SEOP thE SEIVICE .. e e e e e e e e e e e e e e e e eees 58
UNINSEQI EN@ SEIVICE ...iieeeeeiiee et e e e e e e e e s s s e e e e e e e e e e e e e e e ea s s s e e e e s e eesan e s eeeen e e s s e e ean e eennsensnnennnnas 59
L]0 T 1< PPN 59
(012 O g1t =] | =1 T) o TSP 59

RS Lo o TSI T SO PP PP 59

(O] =T @0 7o U1 =1 o o PN 59

(Ol e o vealo] BTN o] o o o il {4 g T = 1] o SRR PP PPPPPPPPPPPPPN 60

4 of 144

Y=ol 1Y@ o 1S T [=T=1 o TS 60

USING H2 iN MICIOSOTE (NET oeiiiiiiiiiiiiiiiiiiiieiieeiiee i esteee s e et eee st ee e e st e e st e e et ee et e eeteettaeete et teeataeateattaetteetteeeteetaaetteetteerssneaeennnnnns 60
USiNG the ADO.NET APT ON .NET ...uuuuuuuuuuuunnunnunnnnsnsanssnssssssss s s ss s ss s s s s ss s sss s s s s s snnbnnnneees 60
USING the JDBC APT ON LNET ...eeutuutuuusuuusuunssunssssssssssnssnssnnssnnnsssees 60

1 PP 61
A o3 o1 ol Y PP 61
(0] 1 =T PPN 61
o] =T o PPN 61
(D101]| PRSP PPUPTTPR 61

(D18 =1 o111 A = 0] o] (<3 o T PSR PPP PP PR 61
Ways to (NOt) AchieVe DUFaDIlityccuereeiiiiii i r e e e s e e s s s e s e e e e e e e e e e nnnnnnnn 61
RUNNING the DUrability TESEeeeeeeiiiiiiiiiiie e r e e s s nr e e e e e e e s s nnr e e e e e e s e s s nnnn s rnnn e e e s 62

L L] T I L= 2ol 1Y oo | PP 62

File LOCKING PrOTOCOISuuuurisininnniinsiisssss e e 63
File LOCKING MEEhOA FIlE' ... e e e e e e aaees 63
File Locking Method 'SOCKEL'cceiiieieeec e 63

(e go=Toiu o] g Ta T R 1@ IR Tt o o PP 64
LA = L 3]] I 1) 1=o o o PP 64
(D= o] [T (o R N1 =Y = ORI 64
L1 T [0] 11 =1 PPN 64
(O LT aTo R g T = (@) I U g ot o o TP 65

Restricting Class LOAding @Nd USAGEceeuiiiiiurrreeriaaiiaiiisreeesasassassssseeeaesssssssssssesasssssnssseeeaasssassnnssnesseassssesennnsnnnnnnnssses 65

SECUNLY PrOTOCOIS .. e e e e e e e e nn e e e 65
(LSS g o= S o o N o ol Yo o o PP PPP PRSPPI 65
L1 LT = ol ¥/ 4 T o PO USPRN 66
o o I o= T o] (e = - TP PPPPT 66
L I I ST (e =TT TP 66

R3S I I R o] o = T N 66

Universally Unique IAentifiers (UUID) uuuuuuoiiiiiiiiiiiiiie e eeeetiiis s s s e e e eeasss s s s s s e staane s s s e e e e ee s s e e e s e e e ee s n s e e e e e e e eeaan e e e aaneennn s 67

Settings Read from SYSLEM PrOPEITIES ...uuuuuiieiiiieiiiiiiii i s e e irses e e e st r e e s e e e e e asa e e e e e e et s s e e e e e e e e eb s r e e s e e e eessaareeenneaeen 67

Setting the Server BiNA AQAIESSoviiiiiiiiiiiiiiiiiiiiiiiie i r e e e e e e e e s e e e e e e e e ee e s e e e e eeesee s e ee s e e e s e e e e e e e e s ee e e e s e e e e s e e ee e s b naans 67

0 =1 o) 67

GIOSSANY @NA LINKS 1etttuiiiiiiieeieetitss e s s s s e sesssss s s s s s e ersas e e s s e e e e e e ssa s e e s e e e e s s saa e e e eeeee e s s a e e e e e e e ee s bR e e ee e e e e e naanneeeeeen e eeennnernnnanen 68

1]] IR = T 2 1= PP 69

Commands (Data ManiPUIGEION).......eeieeiiiiiiieeii e r e s e e e e s s s s b e e e e e e s e e s s s rn e e e e e e s sasnnrnn e e e e s e e e enrnnnnnan 69

(0e)aq = TaTa IS (D=1 = I 1 a1 To o) PPN 69

(00T g aaT=T e 53N (@ 1 0 T=T) PP 70

L 18 0= € = 4] = PP 70

R =] R 1=)1 PPN 71
5] = P 71
1S 2 PP 71
L TP 72
0 72
57X 72
O PP 72
o I PP 72
MERGE ttttteeteeesstteeeeee e e s s st e e e s sssasb e ee e e e e s aasss e e e e ee e e e e R Re e e e e e e e e e s R R R e e e ee e e e e e e R RReeeeeaeeean R RRReeeeeeeeannrrereeaaeaannaees 72
RUN S CRIPT ... tttttteeassesesrreeereessssassraeeeeeassasasssseeeeeesesa s seeeeeeee e e s s sae e e eeaeseasansbaeeeeeaeee s s ss s e eeeeeessannnnneneeeanesennnnnannnnenes 73
5T PP 73
ALTER INDEX RENAME.....cciiiiiiuutteetieasiisisssstesas e s sssssssss e s e s s s sasssas s e s s s s s s sbsa e e £ e e e s s s sn b e e e e £ e e s e e s s R Re e e e e e e s e e s nnnbneeaeeassannan 73
L I S 10 1 PP 74
ALTER TABLE ADD........ccccutteeeeaaaasaaassnseeeeasasssasssssseesessssaassssseeessssssaassssssessssssannssssessesssssansssssesessssasnsnssnsesessssnsnnnnsnnsnnnn 74
ALTER TABLE ADD CONSTRAINTttttttttisiasssssssesessssssssssssssssssssssssss s s s s s s sas s s ee s s s s s asss s s £ e e s s s s s n b e ee e e e s s s e s s b ae e e e e b bnnas 74
ALTER TABLE ALTER COLUMN....ciiiiiiiuutttttiisssinssssssssies s ssssssss st e s ss s s s s b s e e s s s st e b s e e e e e e s s s s b bn e e b e e e s e s s nn b nnas 74
ALTER TABLE ALTER COLUMN RENAME........ciiiitutteeeaaeaaaaassrereeaessssasssseeasassssaassssseasassssansssnseeessssasasssssesseseseseensnnnnnnn 74
ALTER TABLE ALTER COLUMN RESTARTuutteetieasiaaunrneeeeaeesaaaasnssneseesssaaassssesesassssaasssssssesessssaansssssessessssannsssnsenssnsnnnn 75
ALTER TABLE ALTER COLUMN SELECTIVITY .uututttttiiiiiiitssnseinssssinisssssiss s ssssnsssss s asses s s ssssssssssssssssssssssssssssnns 75
ALTER TABLE ALTER COLUMN SET DEFAULTiiiiitttritiissinississri s n s s s s s s s s s nesnsnnnnnns 75
ALTER TABLE ALTER COLUMN SET NOT NULL....iiuitteteieeesiesiirreeee s sssisses e e e s sssssssee s s s s s smnnseessasssssnmnnnssssssssssnnnnns 75
ALTER TABLE ALTER COLUMN SET NULL......uuttttiiiiisisreeereeassassssrseesssessssssnssssessssssasssssssssssssssasssssssessssssssssssessenssnsnnns 75
ALTER TABLE DROP COLUMN......ciiiiittereresesssssasrsseressssssssssssssesssssssssssssssesssassssssssessesssasssssssssssssssnsassssesesessssassssssnnnn 76
ALTER TABLE DROP CONSTRAINTcetttttstssssurreresassssasssnnsessessssasssssssesssssssaassssssessssssassssssessssssssansssssssssessssnssssssnssssnnnn 76
L I 1= Y N 76
I 12 o P 76
ALTER USER ADMIN........utueeeeeeaeaaaansnnereeassaaaassssesaeessasasssnseeeeessasasssssessesessasasssssessessssaansssenessesssaaanassssssseeeeeeeensnnnnnnn 76
ALTER USER RENAME.......ueeetiaaiiaiautneeeeaaasaaaanssseeaesasaaaasssseeesesssaaasssseseeeeassassssnneesaeassaasssnneeesesssssanssssneeseseeeseeeensnnnnnnn 77
ALTER USER SET PASSWORD......ciiiuutttttiiisisiisisssies s sssssssie s sss s e s s s e s £ a s e e e e e e e s s e b b e e b e e e e s s s bnn e e branas 77
L I N 77
L Y 4 PP 77
COMMENTtteeeeees e et eeee e e e s s s sseee e e e e e e s s e sssm e e e e e e e s s s s s se e e ee e e e e s aams R e e e £ e e e e £ e mRn R e e e e e e e e £a R Rn s e e e e e e e s e nRnReEeeaeessannnnnnnnssnasssenen 77
CREATE AGGREGATE. ... tttetitiisiasissrreeetessssasssseeeeasssssaassssesesassssaasssereeeaassssassasesaeassaaasssseeeeeassasassssnnesassssnsnnnsnssesesenenes 78

5 of 144

L0 R I U 78

L0 g I 00 1 R 1 U 78
L R I 10 1 1 U 78
L R I 1 U 79
CREATE LINKED TABLE......ci ittt bbb e e s s e bbb e e e e e e s s s s e b e e e e e s s e e s s e nees 79
L R I 2 U 79
L S I] | U 79
CREATE SEQUENCE.........uuutiiiiiii ittt e e b e e e e s s e b b e e e e e e e s s e bbb bR e e e e e e s s b b e e e bbb s e s e e s e s aannes 80
L N I 1= U 80
L0 g I I 0 (U 80
L I U] 80
L R I YU 81
LD] I 81
0] 0 81
D@ I IR0 I 81
L@ 00 IS 1 A 81
D2 D 1 1 82
00 11T 5 82
3 I 82
DROP SCHEMAL .1ttt E e e e s e s s b EE e e e e s s s s bbb e E e e e e s s e b e e e e e e e e e e e bbb s 82
D0 T = N 82
D I 82
L3O I 0 C C U 83
[0 U Y 83
LD YA 83
LIRS L O I Y 83
L0 83
L0 I I 01 S I8 U 84
L 14) 1 RSP 84
CHECKPOINT SYNC ...ttt bbb e e e s s s e b e e e e e e s s s b b e e e e e e s s s e bbb b e ee e e e s s s b baban e e e 84
L D S (] U 84
L D S U 84
HE P s 84
e R S 010) TP 85
LR 0]G 0 1 o 85
LR 0] 2 85
LR 8 7 85
RO I T 2 R Y I (] 85
SN 0) 1 U 86
] (U 86
] 0 L U 86
ST U 00 U 86
] OO | 7 P 86
] O U I U 87
] L0 1 U 87
5] OO o 2 s 0] U 87
SET DATABASE_EVENT_LISTENER......cciiieii e s e 87
RS I T O 0 1 i 3 N 88
SET DEFAULT_LOCK _TIMEOUT ..cciiiiiiiitiitiiie sttt b bbb e b e e e s s b bbb e s e e s s e e e e 88
SET DEFAULT _TABLE _TYPE...iiiiiiiiiitiiii ittt bbb e a s s s s s s s s s e nn e 88
5] I O I U S U 88
] (]2 =] U 89
] 0 0 SO 89
] 0 I 1= P 89
5] U 89
SET MAX_LENGTH_INPLACE _LOB......utttiiiiiiiiiitiiiiiie it ssbar e e e s bae e s e e e s s s aa b e s s e s e s s s s bbb e e nn e e e 90
] I TG O C Y 4 PP 90
SET MAX_MEMORY _ROWS.... ..ttt bbb e s bbb e e e e s e s s e s s e eees 90
SET MAX_MEMORY _UNDO........ittiiiiiiii ittt e e s ba b e e e e e s s e bbb e e e s e s e s s e s e s e s s aaan e 90
SET MAX_OPERATION_MEMORY ..ottt ittt e s s b s a s s e e 91
5] 1 U 91
SET MULTI_THREADED.......ciiiiiiiiiiiii e 91
SET OPTIMIZE_REUSE_RESULTS....ciiiiiiiiiiitiiiiii i a s aa e e e s s s e an e 91
SET QUERY _TIMEOUT ...ttt bbb e e e s s bbb E e e e e e s s s b e s s s e e s aaen e 92
SET PASSWORD.......ciiiutttiiiiei it e e e s s s s bbb e e £ e s s s e s s b b E R e £ e e e s s e s b bR R e e e e s s e e s bbb e e e e e e e e e e e e ene 92
SET REFERENTIAL _INTEGRITY ..utiiiiiiiiititiiiiis s iitiiii st s s s ba e e e s e s s b e ae e e e s s s s s b b ba e e e e s s s s s aabbnne 92
] I I 1 SO 92
] O | U 92
SET SCHEMA_SEARCH _PATH.....i ittt b e s s s s e s s e anes 93
5] I 1O 1 I 93
S I I 0 O N 93

6 of 144

SET TRACE_MAX _FILE_SIZE.......uutiiiiiiiii ittt bbb e e e e s e e e e s s bbb s e s e s s s e ae e 93

SET UNDO _LOG. . tuuuiiittuiieetuiiestsiesesssissessssssssssssesssssesssssessssssessssetssnteessssmesssees ... 94
SE T VW RITE _DELAY .euuiiiituiiiitttiietttutetssssstesssesssssteessssssasssassssssasssssssssssssssssessssssessssssssssssssssssssesssssseessssseessssnssnsesnsenns 94
SHUTDOWN . 1ttt ettt ieette s s tesa s s testsessassssesssasesssassssasas s sssassssssasssessssssesssssssssssssssessssssssssssessssssesssssssssssssssssssessnsesnsenns 94
(00T 14187] X 94
ST =T oLl = 95
L (0] 0 T 2= T S 95
(000 1o = 95
{2 (S Y u = | 0T 0 =[] | ST PPPPPPP 95
= o] (ST o] 1111 o o TP P PO PPRPPPPPPTRP 95
[T 96
[T 0157 o] o X 96
A 3 T R0 T 11T o T 96
(90 5T 14T o T 96
Condition RIGHE HANA SIde.uuuuiiiii e e e n e 96
(@00 101 1= (= PP RPPTPP 97
(07T = oo PPN 97
(U] 101111 T 97
= (L0 PPN 97
1= 1.1 PP 97
LY = 0T 98
[0 98
(0= LY ST A7 1) 98
(61T ST PP P PP PPRPPP PPN 98
STt q o =1 (o o TSN 98
[1= RN N/ o< S PPN 99
AN 99
A = T 99
(@ TU o] 1=Ya I\ T o o PR PSUPEN 99
)41 PP 99
(D76 =@ B0 <o] g oo P 99
1 100
o T PP 100
[Lt LU 4] o= PSP UPPTPPPI 100
[T 4= 1 P 100
0T o) 1P 100
= | < 101
0T 101
LI LSS = Lo o PPN 101
500 1T o T 101
51 101
0 = 101
R 102
= O 102
DI sttt ettt ettt ———— 102
B0 40 T= 10 T 1= 4= 102
RANGE TaDIE.. .. e 103
0 oo 104
F e o =T F=] T o oL PP 104
N 0T =T Tl 0 T [o LR 104
153 1T T T PP 104
B 0 LS L T = (N 0] oo o TR 105
)AL= T T o L= PPN 105
YL S 106
[0 10 I 1 P 106
[0 10 I] P 106
(0000 L5 R 107
GROUP _CON C AT ..t tttttetettteettuseeestteseesnereeasaseseasareessasreesssnseesssssennssseesssseesssssseesssssseenssssrenssseensssesnsennsenseenneenresnres 107
P 107
P 107
0] TP 107
10 =l I8 = Ol 1 N7 1 1 27T 107
L Y O P 108
L YT Y P 108
LY 2 N 108
R T 1 1 | T 108
A 5 S 108
L 1S 109
) 1N 109
721 S 109
000 P 109

7 of 144

0 P 109
L2 110
L2 110
5 72 P 110
5 1 P 110
2 11050 110
{5 110
CETLIN G .. i tettuieettteeeetteesseaus s e s esus s e e e ssa e eessaseeasss e sannsseesansseesssnsseeannsseeanssseennssseesnnsseensnnsseennnsseennsseennssseensnseennesnsesnes 111
LI OB =i 111
=05 P 111
] 10 111
10 111
1010 111
LR A B Y A 112
1] 2 I PP 112
= 112
[1Y 112
2 A 112
RANDOM _UUID. . ctttuiiittueeiittuseeressesssseeestsesessssssrasseeessssreesssseesssnseessseseessstreesseeesteeesmres 112
200 110 Y 113
ROUNDMAGIC..euutituettiestsesuessssssassrssserassesssessssesssrssssessseessressseessseenressressreesressreetteentrerr e 113
SECURE_RAND.t utittiittiiittisistssratsesassesssssssssssssssssassessssesssessssesssssssssssssessssesssessssesssssssssssssesssessssessesssssssensenssnsensnns 113
1] 113
L]0 L3 2 2 113
[4 = 114
L 2] 114
200 L 2 I R 114
L0071 2 P 114
05N V| P 114
74 = L TR 114
AN R 115
2 = N L o 115
0 L 1 R 115
[T I = I 0 =N I RN 115
L0 R 115
(000 1[0 R 116
DIFFERENCE. ...t iituitietiettiettseessrsssessssrssserassesssessssesssseasssrsssessssessssssssssssssssssssssessssesssesssssssssrssssssssesnseesssestssesnssrsnsens 116
L =0 1 2 116
LR ANV 1O | = 116
N2 116
N1 = 2 I 1T o R 116
L 1Y 117
L2 2 117
] P 117
2 117
10 A = 117
PO ST TION . .ttt tetuterteeerussrasrassersssessssesssessasssssssassssassessssessssssssssssssssssssssessssessssssssssssssssssssssessssssssessssnssnssnssnssnssnsensens 118
0 Y T 118
2 0 118
12 1 118
2 2 1 118
L2 1 S 118
LR] 2 =1 17 N 119
2 2 A 119
2 2 119
SOUNDEX. ..t ttttueeettueseesueseesnsresesnssreesnseeesaseseesssssresnsseeesssseeessssseessssssessssseeesssseessssseessssssesssneseesnsseresnsseessnnneesnresnses 119
10 N P 119
STRINGDECODE.cuuiettiietteette e st ees e esa e eau e et s eanrrasseeasreaneasneasnseassrasssenssesnsessnsessnsessssesnseenseesnsensensensensensenrens 120
STRINGENCODE.ctutittiettieterereret e st rrareaaresnteetreansransrasseessresseensseansseanssesssesnssessressssessssesnerensensenrenrensensenrene 120
R 12 1110 1O 1 120
SUB ST RING. .ttt ttuuterusessssssusrsssrssserssresssssssssssssessssssssessssesssessssesssssssssssssessssesssessssesssssssssssssessseesstessssesesesneesnrsnrenrenrs 120
LI 1 E I 2 1 P 120
D7 1 S 120
XIMLINODDE. .. et utttuiettsetteseanereasesnseessresssessseassseasseanssesssessnsesssssasssassessssesssssssssessssssssssssessssesssssssssssnssnsssransesnsresnnrnns 121
XIMLCOMMEN T st tttutteeuieeausessssesnseessresssesssesssessssessssessseassessssessseesssessssessssesssessssessssesssssssssessseessersssesssresnsersssrsnsenrnnss 121
D11) 1 S 121
XIMLSTARTDOC . .. etttuieettueesienteeeeauseeessseeesssaessessassranseeeasssreessssseesssnssressssesesssseessssseesssnssessssesersssseerssssreessneesssesnrens 121
D1 =) PN 121
AN 22 AN = R 121
R 2 N N 0 =N 122

8 of 144

................................. 122
L8 10 10

....................................... 122
O 2
CASEWHEN Functlon 12
CAST ... 12
B 23
R AL 123
s 123
L 123
e o
DTG P 124
DATABASE_PATH .. o
FILE_READ .. o
R T 12
D 2
R 2
T o
L 2
v 2
o 2
Oy L o
MEMORY_USED .. 120
T 120
v 120
R 12
ey 2
B 2
SESSION_ID .. 2
L 2
e i
D o
R 128
R 128
R DTS TAMP: o
DI 128
D 128
D 2
e o
D o
DAY OEYEAR s o
T o
O AT DATETIME. oo o
HOUR .. o
s o
O AN 130
B o
PARSEDATETIME ... o
QUARTER ... 120
D o
L o
R o
D TS o
D o
D o
B >
D 2
I 3
e P
D B P
D T P
T o
B Y o
s o
B D YD o
N o
D .
R e
CENCHAR TGNORECASE TYPE. oo o
DO T 135
T D I
DD o
L8101 1Y

9 of 144

BUII . e 137
0] =1 011 PP 137
17T 0] 0 T o 137
210 1o gL TR u TSI] Y= 1 O 137
20T o N = 1= PSPPI 137
USING MBVEN 2 1. 138

UsiNg @ Central REPOSITONY ..ciiieiiiei i s 138
(81T To S g T=] o1y T L a3 (o] PP RPPPPTP PP 138
LI 145 1] T PRSP TUPPRPPN 138
)Y o [T T TN == ol o= PP 139

L 1o V= T I o= 3 3= o R PP 140
(@1 pF= TN o T PP 140
2= o {031 o R PP PP PPPPPPPPPPPPPI 140
History Of this Database ENGINEuueuuereriirreiiieiiteeeueerreeereeeseeereesreeessseseessee e esesesessssssssssssssssssssssssssssssssssssssnssnnnnns 140
LAV = V7 TP 140
RST8] 0o ¢ = PP 141

Frequently ASKEA QUESKIONSuuuuu e e e e e e 142

Are there Known Bugs? When is the NeXt REIEASE?uuuuiiiiiiiiiiiiiiiii et e e e e e rr e e e aaa s 142
Is this Database ENGINE OPEN SOUICE?iuuuuuiieieeieeitiiis e s eseetssuas s s s s s e e rssaa e s s e e eeeessa s e eeeeeessaaaeseeeeeeba s e enan s e ernneennnss 142
Y@ LT oY T [TP 142
How to Create @ NeW Dat@base?cciiiiiiiiiiiiiiiei et a e e e e e e e e e e 142
HOow t0 CONNECE T0 @ DAtAD@SE?vvvuuiiieiiiiiiiitiii e e e e e e e e e s e e e e e e e e aa e e e e e e e e e s aa e e e e eeeee s s s e e rnn e eran 142
Where are the Database FileS STOrEA?uuuuuiiiiiiiieiiiiiiii e e e e e e e e e e e e s e e e e s e e e nnaa e e e e s erneeenna s 143
What is the Size Limit (Maximum Size) of @ Database?cccuuuuiiiiiiiiiiiiiii e e e aaa s 143
Lo 2 =)L PP P PP PP PPPPPPPPRPPPPPP 143
Why is Opening My Database SIOW?cceeiiiiiiiiiiiiiiiiiiiiieiie e e e e s e e e e ser e e e s e eeeeeereeseeeereeersesreeeseeereeereeeeeeeneenennnes 144
Lt L O Y L= 6 o g I = o] L = 3 (< PP 144
HOow tO Translate this ProJECE?ceuuuuiiiiii it e e e e e e e e e e e e e e eaaa e e e e e e b e s e aa s e eaa s eean 144

10 of 144

Quickstart

Embedding H2 in an Application
The H2 Console Application

Embedding H2 in an Application
This database can be used in embedded mode, or in server mode. To use it in embedded mode, you need to:

¢ Add h2.jar to the classpath
» Use the JDBC driver class: org.h2.Driver
* The database URL jdbc:h2:~/test opens the database 'test' in your user home directory

The H2 Console Application

The Console lets you access a SQL database using a browser interface.

S —
H2

Database

If you don't have Windows XP, or if something does not work as expected, please see the detailed description in the Tutorial .

Step-by-Step

Installation

Install the software using the Windows Installer (if you did not yet do that).

Start the Console

Click Start , All Programs , H2 , and H2 Console (Command Line) :

J H2 Console

n H2 Console (Command Line)

@:] H2 Documentation

A new console window appears:

11 of 144

file:///C:/data/h2database/h2/docs/html/tutorial.html

[El H2 Console (Command Line) -

Also, a new browser page should open with the URL http://localhost:8082 . You may get a security warning from the firewall. If
you don't want other computers in the network to access the database on your machine, you can let the firewall block these
connections. Only local connections are required at this time.

Login

Select Generic H2 and click Connect :

English % | Preferences Help

Saved Settings: Generic H2 b

Setting MName: Generic H2

Criver Class: org.h2.Driver
JDEC URL: jdbc:h2: test
User Mame: 53

Password:

[Connect] [Test Connection

You are now logged in.

12 of 144

http://localhost:8082/

Sample

Click on the Sample SQL Script :
&7 | e | [¢] Autocommit 0 ¥ |Max F‘.uws: o | i | @
(] idbeth2:test 5QL statement:

[INFORMATION_SCHEMA
{# Users

Important Commands

Icon |Action

(?) Displays this Help Page
“ shows the Command Histary

ﬁ Executes the current SQL statement

L=} |Disconnects from the database

Sample SQL Script

Operations SOL statements

Delete the table if it exists |DROP TABLE IF EXISTS TEST;

Create a new table CREATE TABLE TEST(ID INT PRIMARY KEY,
with ID and MAME columns| MAME VARCHAR(255));

Add a new row IMSERT INTO TEST WALLUES(1, ‘Hello";

Add another row IMSERT INTQ TEST WALUES(Z, "Warld');

Query the table SELECT *FROM TEST ORDER. BY IDy;

Change data in a row IIPDATE TEST SET MAME="Hi' WHERE ID=1;

Remove a row DELETE FR.OM TEST WHERE ID=2;

The SQL commands appear in the command area.

13 of 144

Execute
Click Run :

g | e | [«] Autocommit 0 ¥ |I'~"Iax Rows: | 1000 | 3 | e | 7

(] jdbc:h2:test Run SQL statement:
[_] INFORMATION_SCHEMA TSRoPR TABLE IF EXISTS TEST;
{8} Users CREATE TABLE TEST{ID INT PRIMARY KEY, NAME VARCHAR(255));

IMSERT INTO TEST WALUES(1, Hella);
INSERT INTOQ TEST VALUES(2, "World');
SELECT *FROM TEST ORDER. BY ID;
UPDATE TEST SET NAME="Hi' WHERE ID=1;
DELETE FROM TEST WHERE ID=2;

Important Commands

Icon | Action
(7) Displays this Help Page
*~ |Shows the Command History
i] Executes the current SQL statement

L= |Disconnects from the database

Sample SQL Script

Operations SOL statemenits

Dielete the table if it exists! |DROP TABLE IF EXISTS TEST;
reate a new tahle: CREATE TABLE TEST(ID INT PRIMARY KEY,
Cwith ID and MAME columns] NAME VARCHAR(255));
Add & new row IMSERT INTO TEST WALUES(1, 'Hello);
Add another row INSERT INTO TEST WALUES(Z, "World');
Duery the table: SELECT = FR.OM TEST QRDER BY ID;

a row LIPDATE TEST SET MAME='Hi' WHERE ID=1;
DELETE FR.OM TEST WHERE ID=2;

b

On the left side, a new entry TEST is added below the database icon. The operations and results of the statements are shown

14 of 144

below the script.

Ly | i | [«] Autocommit < ¥y |I'~"Iax Rows: | 1000 | 3 @ | i | (7

[jdbc:h2:test

)

[INFORMATION_SCHEMA
{#} Users

Disconnect

Click on Disconnect :
&7

to close the database.

End

SQL statement:

DROP TABLE IF EXISTS TEST;

CREATE TABLE TEST(ID IMT PRIMARY KEY, MAME VARCHAR(255));
IMSERT IMTOQ TEST VALUES(1, 'Hella');

INSERT INTO TEST VALUES(Z, "World');

SELECT * FROM TEST ORDER. BY ID;

UPDATE TEST SET MAME="Hi' WHERE ID=1;

DELETE FROM TEST WHERE ID=2;|

DR.OP TABLE IF EXISTS TEST
Update Count: 0
(0 ms)

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR.(255))
Update Count: 0
(0 ms)

INSERT INTQ TEST VALUES(1, ‘Hella®)
Update Count: 1
(0 ms)

INSERT INTOQ TEST VALLUES(Z, "Warld")
Update Count: 1
(D ms)

SELECT *FROM TEST ORDER EY ID
ID |MAME

1 |Hello
2 |World
(2 rows, 0 ms)

LUIPDATE TEST SET MAME='Hi' WHERE ID=1
Update Count: 1

Close the console window. For more information, see the Tutorial .

15 of 144

file:///C:/data/h2database/h2/docs/html/tutorial.html

Installation

Requirements
Supported Platforms
Installing the Software
Directory Structure

Requirements
To run the database, the following minimum software stack is known to work:

* Windows XP, MacOS, or Linux

* Recommended Windows file system: NTFS (FAT32 supports files up to 4 GB)
e Sun JDK 1.4 or newer

* Motzilla Firefox 1.5 or newer

Supported Platforms

As this database is written in Java, it can be run on many different platforms. It is tested with Java 1.4, 1.5, and 1.6 but can
also be compiled to native code using GCJ. The source code does not use features of Java 1.5. Currently, the database is
developed and tested on Windows XP using the Sun JDK 1.4, but it also works in many other operating systems and using other
Java runtime environments.

Installing the Software

To install the software, run the installer or unzip it to a directory of your choice.

Directory Structure

After installing, you should get the following directory structure:

Directory Contents
bin JAR and batch files
docs Documentation

docs/html HTML pages
docs/javadoc Javadoc files

ext External dependencies (downloaded when building)
service Tools to run the database as a Windows Service
src Source files

16 of 144

Starting and Using the H2 Console
Connecting to a Database using JDBC
Creating New Databases

Using the Server

Using Hibernate

Using TopLink and Glassfish

Using Databases in Web Applications
CSV (Comma Separated Values) Support
Upgrade, Backup, and Restore
Command Line Tools

Using OpenOffice Base

Java Web Start / INLP

Using a Connection Pool

Fulltext Search

User-Defined Variables

Date and Time

Starting and Using the H2 Console

This application lets you access a SQL database using a browser interface. This can be a H2 database, or another database that
supports the JDBC API.

.
H2
Database

This is a client / server application, so both a server and a client (a browser) are required to run it.
Depending on your platform and environment, there are multiple ways to start the application:

0S Start

Click [Start], [All Programs], [H2], and [H2 Console (Command Line)]
When using the Sun JDK 1.4 or 1.5, a window with the title 'H2 Console ' should appear. When using the Sun JDK

1.6, an icon will be added to the system tray: d

If you don't get the window and the system tray icon, then maybe Java is not installed correctly (in this case, try
another way to start the application). A browser window should open and point to the Login page
http://localhost:8082).

Open a file browser, navigate to h2/bin, and double click on h2.bat.
Windows A console window appears. If there is a problem, you will see an error message in this window. A browser window
will open and point to the Login page (URL: http://localhost:8082).

Open a console window, navigate to the directory 'h2/bin' and type:

Windows

Any java -cp h2.jar org.h2.tools.Server

Firewall

If you start the server, you may get a security warning from the firewall (if you have installed one). If you don't want other
computers in the network to access the application on your machine, you can let the firewall block those connections. The
connection from the local machine will still work. Only if you want other computers to access the database on this computer,
you need allow remote connections in the firewall.

17 of 144

A small firewall is already built into the server: other computers may not connect to the server by default. To change this, go to
'Preferences' and select 'Allow connections from other computers'.

Native Version

The native version does not require Java, because it is compiled using GCJ. However H2 does currently not run stable with GCJ
on Windows It is possible to compile the software to different platforms.

Testing Java

To check the Java version you have installed, open a command prompt and type:
java -version

If you get an error message, you may need to add the Java binary directory to the path environment variable.

Error Message 'Port is in use’

You can only start one instance of the H2 Console, otherwise you will get the following error message: Port is in use, maybe
another ... server already running on... . It is possible to start multiple console applications on the same computer (using
different ports), but this is usually not required as the console supports multiple concurrent connections.

Using another Port

If the port is in use by another application, you may want to start the H2 Console on a different port. This can be done by
changing the port in the file .h2.server.properties. This file is stored in the user directory (for Windows, this is usually in
"Documents and Settings/<username>"). The relevant entry is webPort.

Starting Successfully

If starting the server from a console window was successful, a new window will open and display the following text:

H2 Server running on port 9092
Webserver running on https://localhost:8082/

Don't click inside this window; otherwise you might block the application (if you have the Fast-Edit mode enabled).

Connecting to the Server using a Browser

If the server started successfully, you can connect to it using a web browser. The browser needs to support JavaScript, frames
and cascading stylesheets (css). If you started the server on the same computer as the browser, go to http://localhost:8082 in
the browser. If you want to connect to the application from another computer, you need to provide the IP address of the
server, for example: http://192.168.0.2:8082 . If you enabled SSL on the server side, the URL needs to start with HTTPS.

Multiple Concurrent Sessions

Multiple concurrent browser sessions are supported. As that the database objects reside on the server, the amount of
concurrent work is limited by the memory available to the server application.

Application Properties

Starting the server will create a configuration file in you local home directory called .h2.server.properties . For Windows
installations, this file will be in the directory C:\Documents and Settings\[username] . This file contains the settings of the
application.

18 of 144

http://192.168.0.2:8082/

Login

At the login page, you need to provide connection information to connect to a database. Set the JDBC driver class of your
database, the JDBC URL, user name and password. If you are done, click [Connect].

You can save and reuse previously saved settings. The settings are stored in the Application Properties file.

Error Messages

Error messages in are shown in red. You can show/hide the stack trace of the exception by clicking on the message.

Adding Database Drivers

Additional database drivers can be registered by adding the Jar file location of the driver to the environment variables
H2DRIVERS or CLASSPATH. Example (Windows): To add the database driver library C:\Programs\hsgldb\lib\hsgldb.jar, set the
environment variable H2DRIVERS to C:\Programs\hsqldb\lib\hsgldb.jar.

Multiple drivers can be set; each entry needs to be separated with a ';' (Windows) or ":' (other operating systems). Spaces in
the path names are supported. The settings must not be quoted.

Using the Application

The application has three main panels, the toolbar on top, the tree on the left and the query / result panel on the right. The
database objects (for example, tables) are listed on the left panel. Type in a SQL command on the query panel and click 'Run'.
The result of the command appears just below the command.

Inserting Table Names or Column Names

The table name and column names can be inserted in the script by clicking them in the tree. If you click on a table while the
query is empty, a 'SELECT * FROM ..." is added as well. While typing a query, the table that was used is automatically expanded
in the tree. For, example if you type 'SELECT * FROM TEST T WHERE T.' then the table TEST is automatically expanded in the
tree.

Disconnecting and Stopping the Application

On the browser, click 'Disconnect' on the toolbar panel. You will be logged out of the database. However, the server is still
running and ready to accept new sessions.

To stop the server, right click on the system tray icon and select [Exit]. If you don't have the icon (because you started it in
another way), press [Ctrl]+[C] on the console where the server was started (Windows), or close the console window.

Connecting to a Database using JDBC

To connect to a database, a Java application first needs to load the database driver, and then get a connection. A simple way to
do that is using the following code:

import java.sql.*;
public class Test {
public static void main(String[] a)
throws Exception {
Class.forName("org.h2.Driver");
Connection conn = DriverManager.
getConnection("jdbc:h2:~/test", "sa", "");
// add application code here

¥
19 of 144

This code first loads the driver (Class.forName()) and then opens a connection (using DriverManager.getConnection()). The
driver name is "org.h2.Driver" in every case. The database URL always needs to start with jdbc:h2: to be recognized by this
database. The second parameter in the getConnection() call is the user name (‘'sa’ for System Administrator in this example).
The third parameter is the password. Please note that in this database, user names are not case sensitive, but passwords are
case sensitive.

Creating New Databases

By default, if the database specified in the URL does not yet exist, a new (empty) database is created automatically. The user
that created the database automatically becomes the administrator of this database.

Using the Server

H2 currently supports three servers: a Web Server, a TCP Server and an ODBC Server. The servers can be started in different
ways.

Starting the Server from Command Line

To start the Server from the command line with the default settings, run

java org.h2.tools.Server

This will start the Server with the default options. To get the list of options and default values, run
java org.h2.tools.Server -?

There are options available to use different ports, and start or not start parts of the Server and so on. For details, see the API
documentation of the Server tool.

Connecting to the TCP Server
To remotely connect to a database using the TCP server, use the following driver and database URL:

« JDBC driver class: org.h2.Driver
« Database URL: jdbc:h2:tcp://localhost/~/test

For details about the database URL, see also in Features.

Starting the Server within an Application

It is also possible to start and stop a Server from within an application. Sample code:

import org.h2.tools.Server;

// start the TCP Server
Server server = Server.createTcpServer(args).start();

// stop the TCP Server
server.stop();

20 of 144

Stopping a TCP Server from Another Process

The TCP Server can be stopped from another process. To stop the server from the command line, run:
java org.h2.tools.Server -tcpShutdown tcp://localhost:9092

To stop the server from a user application, use the following code:
org.h2.tools.Server.shutdownTcpServer("tcp://localhost:9094");

This function will call System.exit on the server. This function should be called after all connections to the databases are closed
to avoid recovery when the databases are opened the next time. To stop remote server, remote connections must be enabled
on the server.

Using Hibernate

This database supports Hibernate version 3.1 and newer. You can use the HSQLDB Dialect, or the native H2 Dialect.
Unfortunately the H2 Dialect included in Hibernate is buggy. A patch for Hibernate has been submitted. The dialect for the
newest version of Hibernate is also available at src/tools/org/hibernate/dialect/H2Dialect.java.txt. You can rename it to
H2Dialect.java and include this as a patch in your application.

Using TopLink and Glassfish

To use H2 with Glassfish (or Sun AS), set the Datasource Classname to org.h2.jdbcx.JdbcDataSource . You can set this in the
GUI at Application Server - Resources - JDBC - Connection Pools, or by editing the file sun-resources.xml : at element jdbc-
connection-pool , set the attribute datasource-classname to org.h2.jdbcx.JdbcDataSource .

The H2 database is compatible with HSQLDB and PostgreSQL. To take advantage of H2 specific features, use the H2Platform .
The source code of this platform is included in H2 at
src/tools/oracle/toplink/essentials/platform/database/DatabasePlatform.java.txt . You will need to copy this file to your
application, and rename it to .java. To enable it, change the following setting in persistence.xml:

<property
name="toplink.target-database"
value="oracle.toplink.essentials.platform.database.H2Platform"/>

In old versions of Glassfish, the property name is toplink.platform.class.name .

Using Databases in Web Applications

There are multiple ways to access a database from within web applications. Here are some examples if you use Tomcat or
JBoss.

Embedded Mode

The (currently) simplest solution is to use the database in the embedded mode, that means open a connection in your
application when it starts (a good solution is using a Servlet Listener, see below), or when a session starts. A database can be
accessed from multiple sessions and applications at the same time, as long as they run in the same process. Most Servlet
Containers (for example Tomcat) are just using one process, so this is not a problem (unless you run Tomcat in clustered
mode). Tomcat uses multiple threads and multiple classloaders. If multiple applications access the same database at the same
time, you need to put the database jar in the shared/lib or server/lib directory. It is a good idea to open the database when the

21 of 144

http://opensource.atlassian.com/projects/hibernate/browse/HHH-3401

web application starts, and close it when the web application stops. If using multiple applications, only one (any) of them needs
to do that. In the application, an idea is to use one connection per Session, or even one connection per request (action). Those
connections should be closed after use if possible (but it's not that bad if they don't get closed).

Server Mode

The server mode is similar, but it allows you to run the server in another process.

Using a Servlet Listener to Start and Stop a Database

Add the h2.jar file your web application, and add the following snippet to your web.xml file (after context-param and before
filter):

<listener>
<listener-class>org.h2.server.web.DbStarter</listener-class>
</listener>

For details on how to access the database, see the code DbStarter.java

By default the DbStarter listener opens an embedded connection using the database URL jdbc:h2:~/test and user name and
password 'sa'. It can also start the TCP server, however this is disabled by default. To enable it, use the db.tcpServer parameter
in web.xml. Here is the complete list of options. These options are set just after the display-name and description tag, but
before any listener and filter tags:

<context-param>
<param-name>db.url</param-name>
<param-value>jdbc:h2:~/test</param-value>

</context-param>

<context-param>
<param-name>db.user</param-name>
<param-value>sa</param-value>

</context-param>

<context-param>
<param-name>db.password</param-name>
<param-value>sa</param-value>

</context-param>

<context-param>
<param-name>db.tcpServer</param-name>
<param-value>-tcpAllowOthers</param-value>

</context-param>

When the web application is stopped, the database connection will be closed automatically. If the server is started within the
DbStarter, it will also be stopped automatically when the web application is stopped.

CSV (Comma Separated Values) Support

The CSV file support can be used inside the database using the functions CSVREAD and CSVWRITE, and the CSV library can be
used outside the database as a standalone tool.

Writing a CSV File from Within a Database

The built-in function CSVWRITE can be used to create a CSV file from a query. Example:

CREATE TABLE TEST(ID INT, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello"), (2, 'World");
CALL CSVWRITE('test.csv', 'SELECT * FROM TEST");

22 of 144

Reading a CSV File from Within a Database

A CSV file can be read using the function CSVREAD. Example:

SELECT * FROM CSVREAD('test.csv");

Writing a CSV File from a Java Application

The CSV tool can be used in a Java application even when not using a database at all. Example:

import org.h2.tools.Csv;
import org.h2.tools.SimpleResultSet;

SimpleResultSet rs = new SimpleResultSet();

rs.addColumn("NAME", Types.VARCHAR, 255, 0);

rs.addColumn("EMAIL", Types.VARCHAR, 255, 0);

rs.addColumn("PHONE", Types.VARCHAR, 255, 0);

rs.addRow(new String[] { "Bob Meier", "bob.meier@abcde.abc", "+41123456789" });
rs.addRow(new String[] { "John Jones", "john.jones@abcde.abc", "+41976543210" });
Csv.getInstance().write("data/test.csv", rs, null);

Reading a CSV File from a Java Application

It is possible to read a CSV file without opening a database. Example:

import org.h2.tools.Csv;

ResultSet rs = Csv.getInstance().read("data/test.csv", null, null);
ResultSetMetaData meta = rs.getMetaData();
while (rs.next()) {
for (inti = 0; i < meta.getColumnCount(); i++) {
System.out.printin(meta.getColumnLabel(i + 1) + ": " + rs.getString(i + 1));
b
System.out.printin();

rs.close();

Upgrade, Backup, and Restore

Database Upgrade

The recommended way to upgrade from one version of the database engine to the next version is to create a backup of the
database (in the form of a SQL script) using the old engine, and then execute the SQL script using the new engine.

Backup using the Script Tool

There are different ways to backup a database. For example, it is possible to copy the database files. However, this is not
recommended while the database is in use. Also, the database files are not human readable and quite large. The recommended
way to backup a database is to create a compressed SQL script file. This can be done using the Script tool:

java org.h2.tools.Script -url jdbc:h2:~/test -user sa -script test.zip -options compression zip

It is also possible to use the SQL command SCRIPT to create the backup of the database. For more information about the
options, see the SQL command SCRIPT. The backup can be done remotely, however the file will be created on the server side.
The built in FTP server could be used to retrieve the file from the server.

23 of 144

Restore from a Script

To restore a database from a SQL script file, you can use the RunScript tool:
java org.h2.tools.RunScript -url jdbc:h2:~/test -user sa -script test.zip -options compression zip

For more information about the options, see the SQL command RUNSCRIPT. The restore can be done remotely, however the
file needs to be on the server side. The built in FTP server could be used to copy the file to the server. It is also possible to use
the SQL command RUNSCRIPT to execute a SQL script. SQL script files may contain references to other script files, in the form
of RUNSCRIPT commands. However, when using the server mode, the references script files need to be available on the server
side.

Online Backup

The BACKUP SQL statement and the Backup tool both create a zip file with all database files. However, the contents of this file
are not human readable. Other than the SCRIPT statement, the BACKUP statement does not lock the database objects, and
therefore does not block other users. The resulting backup is transactionally consistent:

BACKUP TO 'backup.zip'

The Backup tool (org.h2.tools.Backup) can not be used to create a online backup; the database must not be in use while
running this program.

Command Line Tools

This database comes with a number of command line tools. To get more information about a tool, start it with the parameter
'-?', for example:

java -cp h2.jar org.h2.tools.Backup -?

The command line tools are:

« Backup creates a backup of a database.

+ ChangeFileEncryption allows changing the file encryption password or algorithm of a database.
» Console starts the browser based H2 Console.

» ConvertTraceFile converts a .trace.db file to a Java application and SQL script.
» CreateCluster creates a cluster from a standalone database.

» DeleteDbFiles deletes all files belonging to a database.

» Script allows converting a database to a SQL script for backup or migration.

* Recover helps recovering a corrupted database.

* Restore restores a backup of a database.

* RunScript runs a SQL script against a database.

» Server is used in the server mode to start a H2 server.

» Shell is a command line database tool.

The tools can also be called from an application by calling the main or another public methods. For details, see the Javadoc
documentation.

Using OpenOffice Base

OpenOffice.org Base supports database access over the JDBC API. To connect to a H2 database using OpenOffice Base, you
first need to add the JDBC driver to OpenOffice. The steps to connect to a H2 database are:

« Start OpenOffice Writer, go to [Tools], [Options]
» Make sure you have selected a Java runtime environment in OpenOffice.org / Java

24 of 144

e Click [Class Path...], [Add Archive...]

» Select your h2.jar (location is up to you, could be wherever you choose)

¢ Click [OK] (as much as needed), stop OpenOffice (including the Quickstarter)
» Start OpenOffice Base

« Connect to an existing database; select JDBC; [Next]

» Example datasource URL: jdbc:h2:~/test

« JDBC driver class: org.h2.Driver

Now you can access the database stored in the current users home directory.
To use H2 in NeoOffice (OpenOffice without X11):

« In NeoOffice, go to [NeoOffice], [Preferences]

+ Look for the page under [NeoOffice], [Java]

» Click [Classpath], [Add Archive...]

« Select your h2.jar (location is up to you, could be wherever you choose)
* Click [OK] (as much as needed), restart NeoOffice.

Now, when creating a new database using the "Database Wizard":

» Select "connect to existing database" and the type "jdbc". Click next.
» Enter your h2 database URL. The normal behavior of H2 is that a new db is created if it doesn't exist.
e Next step - up to you... you can just click finish and start working.

Another solution to use H2 in NeoOffice is:

» Package the h2 jar within an extension package
« Install it as a Java extension in NeoOffice

This can be done by create it using the NetBeans OpenOffice plugin. See also Extensions Development .

Java Web Start / JNLP

When using Java Web Start / JNLP (Java Network Launch Protocol), permissions tags must be set in the .jnlp file, and the
application .jar file must be signed. Otherwise, when trying to write to the file system, the following exception will occur:
java.security.AccessControlException: access denied (java.io.FilePermission ... read). Example permission tags:

<security>
<all-permissions/>
</security>

Using a Connection Pool

For many databases, opening a connection is slow, and it is a good idea to use a connection pool to re-use connections. For H2
however opening a connection usually is fast if the database is already open. Using a connection pool for H2 actually slows
down the process a bit, except if file encryption is used (in this case opening a connection is about half as fast as using a
connection pool). A simple connection pool is included in H2. It is based on the Mini Connection Pool Manager from Christian
d'Heureuse. There are other, more complex connection pools available, for example DBCP . The build-in connection pool is used
as follows:

// init

import org.h2.jdbcx.*;

j.(;IbcDataSource ds = new JdbcDataSource();
ds.setURL("jdbc:h2:~/test");

ds.setUser("sa");
ds.setPassword("sa");

25 of 144

http://jakarta.apache.org/commons/dbcp/
http://www.source-code.biz/snippets/java/8.htm
http://wiki.services.openoffice.org/wiki/Extensions_development_java

JdbcConnectionPool cp = JdbcConnectionPool.create(ds);

// use
Connection conn = cp.getConnection();

conn.close();

// dispose
cp.dispose();

Fulltext Search

H2 supports Lucene full text search and native full text search implementation.

Using the Native Full Text Search
To initialize, call:

CREATE ALIAS IF NOT EXISTS FT_INIT FOR "org.h2.fulltext.FullText.init";
CALL FT_INIT();

You need to initialize it in each database where you want to use it. Afterwards, you can create a full text index for a table using:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello World");
CALL FT_CREATE_INDEX('PUBLIC', 'TEST', NULL);

PUBLIC is the schema, TEST is the table name. The list of column names (column separated) is optional, in this case all
columns are indexed. The index is updated in read time. To search the index, use the following query:

SELECT * FROM FT_SEARCH('Hello', 0, 0);
You can also call the index from within a Java application:

org.h2.fulltext.FullText.search(conn, text, limit, offset)

Using the Lucene Fulltext Search

To use the Lucene full text search, you need the Lucene library in the classpath. How his is done depends on the application; if
you use the H2 Console, you can add the Lucene jar file to the environment variables H2DRIVERS or CLASSPATH. To initialize
the Lucene full text search in a database, call:

CREATE ALIAS IF NOT EXISTS FTL_INIT FOR "org.h2.fulltext.FullTextLucene.init";
CALL FTL_INIT();

You need to initialize it in each database where you want to use it. Afterwards, you can create a full text index for a table using:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello World");
CALL FTL_CREATE_INDEX('PUBLIC', 'TEST', NULL);

PUBLIC is the schema, TEST is the table name. The list of column names (column separated) is optional, in this case all
columns are indexed. The index is updated in read time. To search the index, use the following query:

26 of 144

SELECT * FROM FTL_SEARCH('Hello', 0, 0);
You can also call the index from within a Java application:

org.h2.fulltext.FullTextLucene.search(conn, text, limit, offset)

User-Defined Variables

This database supports user-defined variables. Variables start with @ and can be used wherever expressions or parameters are
used. Variables not persisted and session scoped, that means only visible for the session where they are defined. A value is
usually assigned using the SET command:

SET @USER = 'Joe;
It is also possible to change a value using the SET() method. This is useful in queries:

SET @TOTAL = NULL;
SELECT X, SET(@TOTAL, IFNULL(@TOTAL, 1.) * X) F FROM SYSTEM_RANGE(1, 50);

Variables that are not set evaluate to NULL. The data type of a user-defined variable is the data type of the value assigned to it,
that means it is not necessary (or possible) to declare variable names before using them. There are no restrictions on the
assigned values; large objects (LOBs) are supported as well.

Date and Time

Date, time and timestamp values support ISO 8601 formatting, including time zone:
CALL TIMESTAMP '2008-01-01 12:00:00+01:00';

If the time zone is not set, the value is parsed using the current time zone setting of the system. Date and time information is
stored in H2 database files in GMT (Greenwich Mean Time). If the database is opened using another system time zone, the date
and time will change accordingly. If you want to move a database from one time zone to the other and don't want this to
happen, you need to create a SQL script file using the SCRIPT command or Script tool, and then load the database using the
RUNSCRIPT command or the RunScript tool in the new time zone.

27 of 144

Feature List

Limitations

Comparison to Other Database Engines

H2 in Use

Connection Modes

Database URL Overview

Connecting to an Embedded (Local) Database
Memory-Only Databases

Connecting to a Database with File Encryption
Database File Locking

Opening a Database Only if it Already Exists
Closing the Database

Ignore Unknown Settings

Changing Other Settings when Opening a Connection
Log Index Changes

Custom File Access Mode

Multiple Connections

Database File Layout

Logging and Recovery

Compatibility

Auto-Reconnect

Automatic Mixed Mode

Using the Trace Options

Using Other Logging APIs

Read Only Databases

Read Only Databases in Zip or Jar File

Binary and Text Storage Formats

Graceful Handling of Low Disk Space Situations
Computed Columns / Function Based Index
Multi-Dimensional Indexes

Using Passwords

User-Defined Functions and Stored Procedures
Triggers

Compacting a Database

Cache Settings

Feature List

Main Features

* Very fast database engine

* Free, with source code

* Written in Java

e Supports standard SQL, JDBC API

* Embedded and Server mode, Clustering support
» Strong security features

e The PostgreSQL ODBC driver can be used

e Multi version concurrency

Additional Features

» Disk based or in-memory databases and tables, read-only database support, temporary tables

» Transaction support (read committed and serializable transaction isolation), 2-phase-commit

« Multiple connections, table level locking

« Cost based optimizer, using a genetic algorithm for complex queries, zero-administration

» Scrollable and updatable result set support, large result set, external result sorting, functions can return a result set
« Encrypted database (AES or XTEA), SHA-256 password encryption, encryption functions, SSL

28 of 144

SQL Support

Support for multiple schemas, information schema

Referential integrity / foreign key constraints with cascade, check constraints

Inner and outer joins, subqueries, read only views and inline views

Triggers and Java functions / stored procedures

Many built-in functions, including XML and lossless data compression

Wide range of data types including large objects (BLOB/CLOB) and arrays

Sequence and autoincrement columns, computed columns (can be used for function based indexes)
ORDER BY, GROUP BY, HAVING, UNION, LIMIT, TOP

Collation support, users, roles

Compatibility modes for HSQLDB, MySQL and PostgreSQL

Security Features

Includes a solution for the SQL injection problem

User password authenticated uses SHA-256 and salt

User passwords are never transmitted in plain text over the network (even when using insecure connections)

All database files (including script files that can be used to backup data) can be encrypted using AES-256 and XTEA
encryption algorithms

The remote JDBC driver supports TCP/IP connections over SSL/TLS

The built-in web server supports connections over SSL/TLS

Passwords can be sent to the database using char arrays instead of Strings

Other Features and Tools

Small footprint (smaller than 1 MB), low memory requirements

Multiple index types (b-tree, tree, hash)

Support for multi-dimensional indexes

CSV (comma separated values) file support

Support for linked tables, and a built-in virtual 'range’ table

EXPLAIN PLAN support, sophisticated trace options

Database closing can be delayed or disabled to improve the performance

Web-based Console application (English, German, partially French and Spanish) with autocomplete
The database can generate SQL script files

Contains a recovery tool that can dump the contents of the data file

Support for variables (for example to calculate running totals)

Automatic re-compilation of prepared statements

Uses a small number of database files, binary and text storage formats, graceful handling of low disk space situations
Uses a checksum for each record and log entry for data integrity

Well tested (high code coverage, randomized stress tests)

Limitations

For the list of limitations, please have a look at the road map page at: http://groups.google.com/group/h2-
database/web/roadmap

Comparison to Other Database Engines

Feature H2 Derby HSQLDB MySQL PostgreSQL
Pure Java Yes Yes Yes No No
Embedded Mode (Java) Yes Yes Yes No No
Performance (Embedded) Fast Slow Fast N/A N/A
In-Memory Mode Yes No Yes No No
Transaction Isolation Yes Yes No Yes Yes

29 of 144

http://groups.google.com/group/h2-database/web/roadmap
http://groups.google.com/group/h2-database/web/roadmap

Cost Based Optimizer Yes Yes No Yes Yes

Clustering Yes No No Yes Yes
Encrypted Database Yes Yes No No No
Linked Tables Yes No Partially *1 Partially *2 No
ODBC Driver Yes No No Yes Yes
Fulltext Search Yes No No Yes Yes
User-Defined Datatypes Yes No No Yes Yes
Files per Database Few Many Few Many Many
Table Level Locking Yes Yes No Yes Yes
Row Level Locking Yes *9 Yes No Yes Yes
Multi Version Concurrency Yes No No No Yes
Role Based Security Yes Yes *3 Yes Yes Yes
Updatable Result Sets Yes Yes *7 No Yes Yes
Sequences Yes No Yes No Yes
Limit and Offset Yes No Yes Yes Yes
Temporary Tables Yes Yes *4 Yes Yes Yes
Information Schema Yes No *8 No *8 Yes Yes
Computed Columns Yes No No No Yes *6
Case Insensitive Columns Yes No Yes Yes Yes *6
Custom Aggregate Functions Yes No No Yes Yes
Footprint (jar/dll size) ~1MB*5 ~2MB ~600KB ~4 MB ~6 MB

*1 HSQLDB supports text tables.

*2 MySQL supports linked MySQL tables under the name 'federated tables'.

*3 Derby support for roles based security and password checking as an option.

*4 Derby only supports global temporary tables.

*5 The default H2 jar file contains debug information, jar files for other databases do not.

*6 PostgreSQL supports functional indexes.

*7 Derby only supports updatable result sets if the query is not sorted.

*8 Derby and HSQLDB don't support standard compliant information schema tables. *9 H2 supports row level locks when using
multi version concurrency.

Derby and HSQLDB

After an unexpected process termination (for example power failure), H2 can recover safely and automatically without any user
interaction. For Derby and HSQLDB, some manual steps are required (‘Another instance of Derby may have already booted the
database' / 'The database is already in use by another process').

DaffodilDb and One$Db

It looks like the development of this database has stopped. The last release was February 2006.

McKoi

It looks like the development of this database has stopped. The last release was August 2004

H2 in Use

For a list of applications that work with or use H2, see: Links .

30 of 144

file:///C:/data/h2database/h2/docs/html/links.html

Connection Modes
The following connection modes are supported:

* Embedded mode (local connections using JDBC)
* Remote mode (remote connections using JDBC or ODBC over TCP/IP)
» Mixed mode (local and remote connections at the same time)

Embedded Mode

In embedded mode, an application opens a database from within the same JVM using JDBC. This is the fastest and easiest
connection mode. The disadvantage is that a database may only be open in one virtual machine (and class loader) at any time.
As in all modes, both persistent and in-memory databases are supported. There is no limit on the number of database open
concurrently, or on the number of open connections.

Embedded

Application

H"H __._..."/
HZ
Database

Remote Mode

When using the remote mode (sometimes called server mode or client/server mode), an application opens a database remotely
using the JDBC or ODBC API. A server needs to be started within the same or another virtual machine (or on another
computer). Many applications can connect to the same database at the same time. The remote mode is slower than the
embedded mode, because all data is transferred over TCP/IP. As in all modes, both persistent and in-memory databases are
supported. There is no limit on the number of database open concurrently, or on the number of open connections.

Remote

Mixed Mode

The mixed mode is a combination of the embedded and the remote mode. The main application connects to a database in
embedded mode, but also starts a server so that other applications (running in different virtual machines) can concurrently
access the same data. The embedded connections are as fast as if the database is used in just the embedded mode, while the
remote connections are a bit slower.

31 of 144

Mixed Mode) i
Application

Database

Database URL Overview

This database supports multiple connection modes and connection settings. This is achieved using different database URLs.
Settings in the URLs are not case sensitive.

Topic URL Format and Examples
jdbc:h2:[file:][<path>]<databaseName>
jdbc:h2:~/test

jdbc:h2:file:/data/sample
jdbc:h2:file:C:/data/sample (Windows only)
In-Memory (private) jdbc:h2:mem:

jdbc:h2:mem: <databaseName>
jdbc:h2:mem:test._mem
jdbc:h2:tcp://<server>[:<port>]/<databaseName>
Remote using TCP/IP jdbc:h2:tcp://localhost/~/test
jdbc:h2:tcp://dbserv:8084/~/sample
jdbc:h2:ssl://<server>[:<port>]/<databaseName>
jdbc:h2:ssl://secureserv:8085/~/sample;
jdbc:h2:<url>;CIPHER=[AES|XTEA]
Using Encrypted Files jdbc:h2:ssl://secureserv/~/testdb; CIPHER=AES
jdbc:h2:file:~/secure;CIPHER=XTEA
jdbc:h2: <url>;FILE_LOCK={NO|FILE|SOCKET}
File Locking Methods jdbc:h2:file:~/quickAndDirty;FILE_LOCK=NO
jdbc:h2:file:~/private; CIPHER=XTEA;FILE_LOCK=SOCKET
jdbc:h2: <url>;IFEXISTS=TRUE
jdbc:h2:file:~/sample; IFEXISTS=TRUE

Don't Close the Database when the VM Exits jdbc:h2:<url>;DB_CLOSE_ON_EXIT=FALSE

jdbc:h2:<url>[;USER=<username>][;PASSWORD=<value>]
jdbc:h2:file:~/sample; USER=sa;PASSWORD=123
jdbc:h2:<url>;LOG=2

jdbc:h2:file:~/sample;LOG=2

jdbc:h2:<url>; TRACE_LEVEL_FILE=<level 0..3>
jdbc:h2:file:~/sample; TRACE_LEVEL_FILE=3

Ignore Unknown Settings jdbc:h2:<url>;IGNORE_UNKNOWN_SETTINGS=TRUE

Custom File Access Mode jdbc:h2: <url>;ACCESS_MODE_LOG=rws;ACCESS_MODE_DATA=rws
jdbc:h2:zip: <zipFileName>!/<databaseName>
jdbc:h2:zip:~/db.zip!/test

jdbc:h2:<url>;MODE=<databaseType>

jdbc:h2:~/test; MODE=MYSQL

jdbc:h2:<url>;AUTO_RECONNECT=TRUE
jdbc:h2:tcp://localhost/~/test; AUTO_RECONNECT=TRUE

jdbc:h2:<url>;AUTO_SERVER=TRUE
jdbc:h2:~/test; AUTO_SERVER=TRUE

jdbc:h2: <url>; <setting>=<value>[; <setting>=<value>...]
jdbc:h2:file:~/sample; TRACE_LEVEL_SYSTEM_OUT=3

Embedded (local) connection

In-Memory (named)

Remote using SSL/TLS

Only Open if it Already Exists

User Name and/or Password
Log Index Changes

Debug Trace Settings

Database in or Zip File
Compatibility Mode
Auto-Reconnect
Automatic Mixed Mode
Changing Other Settings

32 of 144

Connecting to an Embedded (Local) Database

The database URL for connecting to a local database is jdbc:h2:[file:][<path>]<databaseName> . The prefix file: is optional. If
no or only a relative path is used, then the current working directory is used as a starting point. The case sensitivity of the path
and database name depend on the operating system, however it is recommended to use lowercase letters only. The database
name must be at least three characters long (a limitation of File.createTempFile). To point to the user home directory, use ~/,
as in: jdbc:h2:~/test.

Memory-Only Databases

For certain use cases (for example: rapid prototyping, testing, high performance operations, read-only databases), it may not
be required to persist (changes to) the data at all. This database supports the memory-only mode, where the data is not
persisted.

In some cases, only one connection to a memory-only database is required. This means the database to be opened is private.
In this case, the database URL is jdbc:h2:mem: Opening two connections within the same virtual machine means opening two
different (private) databases.

Sometimes multiple connections to the same memory-only database are required. In this case, the database URL must include
a name. Example: jdbc:h2:mem:db1 . Accessing the same database in this way only works within the same virtual machine and
class loader environment.

It is also possible to access a memory-only database remotely (or from multiple processes in the same machine) using TCP/IP
or SSL/TLS. An example database URL is: jdbc:h2:tcp://localhost/mem:db1 (using private database remotely is also possible).

By default, when the last connection to a in-memory database is closed, the contents are lost. This can be disabled by
adding ;DB_CLOSE_DELAY=-1 to the database URL. That means to keep the contents of an in-memory database as long as the
virtual machine is alive, use jdbc:h2:mem:test;DB_CLOSE_DELAY=-1

Connecting to a Database with File Encryption

To use file encryption, it is required to specify the encryption algorithm (the 'cipher') and the file password. The algorithm
needs to be specified using the connection parameter. Two algorithms are supported: XTEA and AES. The file password is
specified in the password field, before the user password. A single space needs to be added between the file password and the
user password; the file password itself may not contain spaces. File passwords (as well as user passwords) are case sensitive.
Here is an example to connect to a password-encrypted database:

Class.forName("org.h2.Driver");
String url = "jdbc:h2:~/test; CIPHER=AES";
String user = "sa";
String pwds = "filepwd userpwd";
conn = DriverManager.
getConnection(url, user, pwds);

Database File Locking

Whenever a database is opened, a lock file is created to signal other processes that the database is in use. If database is
closed, or if the process that opened the database terminates, this lock file is deleted.

The following file locking methods are implemented:

33 of 144

« The default method is 'file' and uses a watchdog thread to protect the database file. The watchdog reads the lock file
each second.

* The second method is 'socket' and opens a server socket. The socket method does not require reading the lock file
every second. The socket method should only be used if the database files are only accessed by the one (and always
the same) computer.

« Itis also possible to open the database without file locking; in this case it is up to the application to protect the
database files.

To open the database with a different file locking method, use the parameter 'FILE_LOCK'. The following code opens the
database with the 'socket' locking method:

String url = "jdbc:h2:~/test;FILE_LOCK=SOCKET";

The following code forces the database to not create a lock file at all. Please note that this is unsafe as another process is able
to open the same database, possibly leading to data corruption:

String url = "jdbc:h2:~/test;FILE_LOCK=NQ";

For more information about the algorithms please see in Advanced Topics under File Locking Protocol.

Opening a Database Only if it Already Exists

By default, when an application calls DriverManager.getConnection(url,...) and the database specified in the URL does not yet
exist, a new (empty) database is created. In some situations, it is better to restrict creating new database, and only open the
database if it already exists. This can be done by adding ;ifexists=true to the URL. In this case, if the database does not already
exist, an exception is thrown when trying to connect. The connection only succeeds when the database already exists. The
complete URL may look like this:

String url = "jdbc:h2:/data/sample;IFEXISTS=TRUE";

Closing the Database

Delayed Database Closing

Usually, the database is closed when the last connection to it is closed. In some situations this slows down the application, for
example when it is not possible leave the connection open. The automatic closing of the database can be delayed or disabled
with the SQL statement SET DB_CLOSE_DELAY <seconds>. The seconds specifies the number of seconds to keep a database
open after the last connection to it was closed. For example the following statement will keep the database open for 10
seconds:

SET DB_CLOSE_DELAY 10

The value -1 means the database is never closed automatically. The value 0 is the default and means the database is closed
when the last connection is closed. This setting is persistent and can be set by an administrator only. It is possible to set the
value in the database URL: jdbc:h2:~/test;DB_CLOSE_DELAY=10 .

Don't Close the Database when the VM Exits

By default, a database is closed when the last connection is closed. However, if it is never closed, the database is closed when
the virtual machine exits normally. This is done using a shutdown hook. In some situations, the database should not be closed
in this case, for example because the database is still used at virtual machine shutdown (to store the shutdown process in the

34 of 144

database for example). For those cases, the automatic closing of the database can be disabled in the database URL. The first
connection (the one that is opening the database) needs to set the option in the database URL (it is not possible to change the
setting afterwards). The database URL to disable database closing on exit is:

String url = "jdbc:h2:~/test;DB_CLOSE_ON_EXIT=FALSE";

Log Index Changes

Usually, changes to the index file are not logged for performance. If the index file is corrupt or missing when opening a
database, it is re-created from the data. The index file can get corrupt when the database is not shut down correctly, because
of power failure or abnormal program termination. In some situations, for example when using very large databases (over a
few hundred MB), re-creating the index file takes very long. In these situations it may be better to log changes to the index file,
so that recovery from a corrupted index file is fast. To enable log index changes, add LOG=2 to the URL, as in
jdbc:h2:~/test;LOG=2 This setting should be specified when connecting. The update performance of the database will be
reduced when using this option.

Ignore Unknown Settings

Some applications (for example OpenOffice.org Base) pass some additional parameters when connecting to the database. Why
those parameters are passed is unknown. The parameters PREFERDOSLIKELINEENDS and IGNOREDRIVERPRIVILEGES are
such examples; they are simply ignored to improve the compatibility with OpenOffice.org. If an application passes other
parameters when connecting to the database, usually the database throws an exception saying the parameter is not supported.
It is possible to ignored such parameters by adding ;IGNORE_UNKNOWN_SETTINGS=TRUE to the database URL.

Changing Other Settings when Opening a Connection

In addition to the settings already described (cipher, file_lock, ifexists, user, password), other database settings can be passed
in the database URL. Adding setting=value at the end of an URL is the same as executing the statement SET setting value just
after connecting. For a list of settings supported by this database please see the SQL grammar documentation.

Custom File Access Mode

Usually, the database opens log, data and index files with the access mode 'rw', meaning read-write (except for read only
databases, where the mode 'r' is used). To open a database in read-only mode if the files are not read-only, use
ACCESS_MODE_DATA=r. Also supported are 'rws' and 'rwd'. The access mode used for log files is set via ACCESS_MODE_LOG;
for data and index files use ACCESS_MODE_DATA. These settings must be specified in the database URL:

String url = "jdbc:h2:~/test; ACCESS_MODE_LOG=rws;ACCESS_MODE_DATA=rws";

For more information see Durability Problems . On many operating systems the access mode 'rws' does not guarantee that the
data is written to the disk.

35 of 144

Multiple Connections

Opening Multiple Databases at the Same Time

An application can open multiple databases at the same time, including multiple connections to the same database. The number
of open database is only limited by the memory available.

Multiple Connections to the Same Database: Client/Server

If you want to access the same database at the same time from different processes or computers, you need to use the client /
server mode. In this case, one process acts as the server, and the other processes (that could reside on other computers as
well) connect to the server via TCP/IP (or SSL/TLS over TCP/IP for improved security).

Multithreading Support

This database is multithreading-safe. That means, if an application is multi-threaded, it does not need o worry about
synchronizing the access to the database. Internally, most requests to the same database are synchronized. That means an
application can use multiple threads accessing the same database at the same time, however if one thread executes a long
running query, the other threads need to wait.

Locking, Lock-Timeout, Deadlocks

The database uses table level locks to give each connection a consistent state of the data. There are two kinds of locks: read
locks (shared locks) and write locks (exclusive locks). If a connection wants to reads from a table, and there is no write lock on
the table, then a read lock is added to the table. If there is a write lock, then this connection waits for the other connection to
release the lock. If connection cannot get a lock for a specified time, then a lock timeout exception is thrown.

Usually, SELECT statement will generate read locks. This includes subqueries. Statements that modify data use write locks. It is
also possible to lock a table exclusively without modifying data, using the statement SELECT ... FOR UPDATE. The statements
COMMIT and ROLLBACK releases all open locks. The commands SAVEPOINT and ROLLBACK TO SAVEPOINT don't affect locks.
The locks are also released when the autocommit mode changes, and for connections with autocommit set to true (this is the
default), locks are released after each statement. Here is an overview on what statements generate what type of lock:

Type of Lock SQL Statement
SELECT * FROM TEST

Read CALL SELECT MAX(ID) FROM TEST
SCRIPT
Write SELECT * FROM TEST WHERE 1=0 FOR UPDATE

INSERT INTO TEST VALUES(1, 'Hello")
INSERT INTO TEST SELECT * FROM TEST

Write UPDATE TEST SET NAME="Hi"
DELETE FROM TEST
ALTER TABLE TEST ...

Write CREATE INDEX ... ON TEST ...
DROP INDEX ...

The number of seconds until a lock timeout exception is thrown can be set separately for each connection using the SQL
command SET LOCK_TIMEOUT <milliseconds>. The initial lock timeout (that is the timeout used for new connections) can be
set using the SQL command SET DEFAULT_LOCK_TIMEOUT <milliseconds>. The default lock timeout is persistent.

Database File Layout

There are a number of files created for persistent databases. Other than some databases, not every table and/or index is stored
in its own file. Instead, usually only the following files are created: A data file, an index file, a log file, and a database lock file
(exists only while the database is in use). In addition to that, a file is created for each large object (CLOB/BLOB), a file for each
linear index, and temporary files for large result sets. Then the command SCRIPT can create script files. If the database trace
option is enabled, trace files are created. The following files can be created by the database:

36 of 144

File Name Description Number of Files

Data file
test.data.db Contains the data for all tables 1 per database
Format: <database>.data.db

Index file
test.index.db Contains the data for all (btree) indexes 1 per database
Format: <database>.index.db
Log file
test.0.log.db The log file is used for recovery 0 or more per database
Format: <database>.<id>.log.db

Database lock file
test.lock.db Exists only if the database is open 1 per database
Format: <database>.lock.db

Trace file

Contains trace information

Format: <database>.trace.db

If the file is too big, it is renamed to <database>.trace.db.old

Large object
test.14.15.lob.db Contains the data for BLOB or CLOB 1 per object
Format: <database>.<tableid>.<id>.lob.db

Temporary file
test.123.temp.db Contains a temporary blob or a large result set 1 per object
Format: <database>.<session id>.<object id>.temp.db

Hash index file
test.7.hash.db Contains the data for a linear hash index 1 per linear hash index
Format: <database>.<object id>.hash.db

test.trace.db 1 per database

Moving and Renaming Database Files
Database name and location are not stored inside the database names.

While a database is closed, the files can be moved to another directory, and they can be renamed as well (as long as all files
start with the same name).

As there is no platform specific data in the files, they can be moved to other operating systems without problems.

Backup

When the database is closed, it is possible to backup the database files. Please note that index files do not need to be backed
up, because they contain redundant data, and will be recreated automatically if they don't exist.

To backup data while the database is running, the SQL command SCRIPT can be used.

Logging and Recovery

Whenever data is modified in the database and those changes are committed, the changes are logged to disk (except for in-
memory objects). The changes to the data file itself are usually written later on, to optimize disk access. If there is a power
failure, the data and index files are not up-to-date. But because the changes are in the log file, the next time the database is
opened, the changes that are in the log file are re-applied automatically.

Please note that index file updates are not logged by default. If the database is opened and recovery is required, the index file
is rebuilt from scratch.

There is usually only one log file per database. This file grows until the database is closed successfully, and is then deleted. Or,
if the file gets too big, the database switches to another log file (with a higher id). It is possible to force the log switching by
using the CHECKPOINT command.

If the database file is corrupted, because the checksum of a record does not match (for example, if the file was edited with
another application), the database can be opened in recovery mode. In this case, errors in the database are logged but not
thrown. The database should be backed up to a script and re-built as soon as possible. To open the database in the recovery

37 of 144

mode, use a database URL must contain RECOVER=1, as in jdbc:h2:~/test;RECOVER=1. Indexes are rebuilt in this case, and
the summary (object allocation table) is not read in this case, so opening the database takes longer.

Compatibility

All database engines behave a little bit different. Where possible, H2 supports the ANSI SQL standard, and tries to be
compatible to other databases. There are still a few differences however:

In MySQL text columns are case insensitive by default, while in H2 they are case sensitive. However H2 supports case
insensitive columns as well. To create the tables with case insensitive texts, append IGNORECASE=TRUE to the database URL
(example: jdbc:h2:~/test;IGNORECASE=TRUE).

Compatibility Modes

For certain features, this database can emulate the behavior of specific databases. Not all features or differences of those
databases are implemented. Here is the list of currently supported modes and the difference to the regular mode:

PostgreSQL Compatibility Mode

To use the PostgreSQL mode, use the database URL jdbc:h2:~/test;MODE=PostgreSQL or the SQL statement SET MODE
PostgreSQL .

» Concatenation of a NULL with another value results in NULL. Usually, the NULL is treated as an empty string if only
one of the operators is NULL, and NULL is only returned if both values are NULL.

* When converting a floating point number to a integer, the fractional digits should not be truncated, but the value
should be rounded.

* The system columns 'CTID' and 'OID' should be supported.

* For aliased columns, ResultSetMetaData.getColumnName() returns the alias name and getTableName() returns null.

MySQL Compatibility Mode
To use the MySQL mode, use the database URL jdbc:h2:~/test; MODE=MySQL or the SQL statement SET MODE MySQL .

* When inserting data, if a column is defined to be NOT NULL and NULL is inserted, then a 0 (or empty string, or the
current timestamp for timestamp columns) value is used. Usually, this operation is not allowed and an exception is
thrown.

» When converting a floating point nhumber to a integer, the fractional digits should not be truncated, but the value
should be rounded.

* The identifiers should be returned in lower case.

» Creating indexes in the CREATE TABLE statement should be supported.

» For aliased columns, ResultSetMetaData.getColumnName() and getTableName() return the real column and table
name.

HSQLDB Compatibility Mode
To use the HSQLDB mode, use the database URL jdbc:h2:~/test; MODE=HSQLDB or the SQL statement SET MODE HSQLDB .

» Concatenation of a NULL with another value results in NULL. Usually, the NULL is treated as an empty string if only
one of the operators is NULL, and NULL is only returned if both values are NULL.

* When converting the scale of decimal data, the number is only converted if the new scale is smaller then current scale.
Usually, the scale is converted and Os are added if required.

* When using unique indexes, multiple rows with NULL in one of the columns are allowed by default. However many
databases view NULL as distinct in this regard and only allow one row with NULL.

» For aliased columns, ResultSetMetaData.getColumnName() returns the alias name and getTableName() returns null.

38 of 144

MS SQL Server Compatibility Mode

To use the MS SQL Server mode, use the database URL jdbc:h2:~/test; MODE=MSSQLServer or the SQL statement SET MODE
MSSQLServer .

» Identifiers may be quoted using square brackets as in [Test].

* When using unique indexes, multiple rows with NULL in one of the columns are allowed by default. However many
databases view NULL as distinct in this regard and only allow one row with NULL.

» For aliased columns, ResultSetMetaData.getColumnName() returns the alias name and getTableName() returns null.

Derby Compatibility Mode
To use the Derby mode, use the database URL jdbc:h2:~/test; MODE=Derby or the SQL statement SET MODE Derby .

* When using unique indexes, multiple rows with NULL in one of the columns are allowed by default. However many
databases view NULL as distinct in this regard and only allow one row with NULL.
» For aliased columns, ResultSetMetaData.getColumnName() returns the alias name and getTableName() returns null.

Oracle Compatibility Mode
To use the Oracle mode, use the database URL jdbc:h2:~/test; MODE=Oracle or the SQL statement SET MODE Oracle .

* When using unique indexes, multiple rows with NULL in one of the columns are allowed by default. However many
databases view NULL as distinct in this regard and only allow one row with NULL.
» For aliased columns, ResultSetMetaData.getColumnName() returns the alias name and getTableName() returns null.

Auto-Reconnect

The auto-reconnect feature causes the JDBC driver to reconnect to the database if the connection is lost. The automatic re-
connect only occurs when auto-commit is enabled; if auto-commit is disabled, an exception is thrown.

Re-connecting will open a new session. After an automatic re-connect, variables and local temporary tables definitions
(excluding data) are re-created. The contents of the system table INFORMATION_SCHEMA.SESSION_STATE contains all client
side state that is re-created.

Automatic Mixed Mode

Multiple processes can access the same database without having to explicitly start the server. To do that, append
;AUTO_SERVER=TRUE to the database URL. In this case, the first connection to the database is made in embedded mode, and
additionally a server is started. If the database is already open in another process, the server mode is used.

When using this feature, auto-reconnect is enabled as well.

The application that opens the first connection to the database uses the embedded mode, which is faster than the server mode.
Therefore the main application should open the database first if possible. A server is started on a random port. This server
allows remote connections, however only to this database. In addition to the user name and password, the client sends the
random key that is stored in .lock.db file to the server.

39 of 144

Using the Trace Options

To find problems in an application, it is sometimes good to see what database operations where executed. This database offers
the following trace features:

e Trace to System.out and/or a file

« Support for trace levels OFF, ERROR, INFO, and DEBUG

* The maximum size of the trace file can be set

* The Java code generation is possible

* Trace can be enabled at runtime by manually creating a file
Trace Options

The simplest way to enable the trace option is setting it in the database URL. There are two settings, one for System.out
(TRACE_LEVEL_SYSTEM_OUT) tracing, and one for file tracing (TRACE_LEVEL_FILE). The trace levels are 0 for OFF, 1 for
ERROR (the default), 2 for INFO and 3 for DEBUG. A database URL with both levels set to DEBUG is:

jdbc:h2:~/test; TRACE_LEVEL_FILE=3;TRACE_LEVEL_SYSTEM_OUT=3

The trace level can be changed at runtime by executing the SQL command SET TRACE_LEVEL_SYSTEM_OUT level (for
System.out tracing) or SET TRACE_LEVEL_FILE level (for file tracing). Example:

SET TRACE_LEVEL_SYSTEM_OUT 3

Setting the Maximum Size of the Trace File

When using a high trace level, the trace file can get very big quickly. The size of the file can be limited by executing the SQL
statement SET TRACE_MAX_FILE_SIZE maximumFileSizeInMB . If the log file exceeds the limit, the file is renamed to .old and a
new file is created. If another .old file exists, it is deleted. The default setting is 16 MB. Example:

SET TRACE_MAX_FILE_SIZE 1

Java Code Generation

When setting the trace level to INFO or DEBUG, Java source code is generated as well, so that problem can be reproduced
more easily. The trace file looks like this:

12-20 20:58:09 jdbc[0]:
/**/dbMeta3.getURL();
12-20 20:58:09 jdbc[0]:
/**/dbMeta3.getTables(null, "", null, new String[]{"TABLE", "VIEW"});

You need to filter out the lines without /**/ to get the Java source code. In Windows, a simple way to do that is:
find "**" test.trace.db > Trace.java
Afterwards, you need to complete the file Trace.java before it can be compiled, for example with:

import java.sql.*;

public class Trace { public static void main(String[]a)throws Exception {
Class.forName("org.h2.Driver");

1

Also, the user name and password needs to be set, because they are not listed in the trace file.

40 of 144

Enabling the Trace Option at Runtime by Manually Creating a File

Sometimes, you can't or don't want to change the application or database URL. There is still a way to enable the trace mode in
these cases, even at runtime (while the database connection is open). You only need to create a special file in the directory
where the database files are stored. The database engine checks every 4 seconds if this file exists (only while executing a
statement). The file name is the database name plus ".trace.db.start'. This feature is disabled if the database is encrypted.

Example: if a database is called 'test’, then the file to start tracing is 'test.trace.db.start'. The database engine tries to delete
this file when it detects it. If trace is enabled using the start file, the trace level is not persistent to the database, and trace is
switched back to the level that was set before when connecting to the database. However, if the start file is read only, the
database engine cannot delete the file and will always enable the trace mode when connecting.

Using Other Logging APIs

By default, this database uses its own native 'trace' facility. This facility is called 'trace' and not 'log' within this database to
avoid confusion with the transaction log. Trace messages can be written to both file and System.out. In most cases, this is
sufficient, however sometimes it is better to use the same facility as the application, for example Log4j. To do that, this
database support SLF4].

SLF4] is a simple facade for various logging APIs and allows to plug in the desired implementation at deployment time. SLF4]
supports implementations such as Logback, Log4j, Jakarta Commons Logging (JCL), JDK 1.4 logging, x4juli, and Simple Log.

To enable SLF4], set the file trace level to 4 in the database URL:
jdbc:h2:~/test; TRACE_LEVEL_FILE=4

Changing the log mechanism is not possible after the database is open, that means executing the SQL statement SET
TRACE_LEVEL_FILE 4 when the database is already open will not have the desired effect. To use SLF4], all required jar files
need to be in the classpath. If it does not work, check in the file <database>.trace.db for error messages.

Read Only Databases

If the database files are read-only, then the database is read-only as well. It is not possible to create new tables, add or modify
data in this database. Only SELECT statements are allowed. To create a read-only database, close the database so that the log
file gets smaller. Do not delete the log file. Then, make the database files read-only using the operating system. When you
open the database now, it is read-only. There are two ways an application can find out a database is read-only: By calling
Connection.isReadOnly() or by executing the SQL statement CALL READONLY/().

Read Only Databases in Zip or Jar File

To create a read-only database in a zip, first create a regular persistent database, and then create a backup. If you are using a
database named 'test', an easy way to do that is using the Backup tool or the BACKUP SQL statement:

BACKUP TO 'data.zip'

The database must not have pending changes, that means you need to close all connections to the database, open one single
connection, and then execute the statement. Afterwards, you can log out, and directly open the database in the zip file using
the following database URL:

jdbc:h2:zip:~/data.zip!/test

Databases in a zip file are read-only. The performance for some queries will be slower than when using a regular database,
because random access in zip files is not supported (only streaming). How much this affects the performance depends on the
41 of 144

http://www.slf4j.org/

queries and the data. The database is not read in memory; so large databases are supported as well. The same indexes are
used than when using a regular database.

Binary and Text Storage Formats

This database engine supports both binary and text storage formats. The binary format is faster, but the text storage format
can be useful as well, for example to debug the database engine. If a database already exists, the storage format is recognized
automatically. New databases are created in the binary storage format by default. To create a new database in the text storage
format, the database URL must contain the parameter STORAGE=TEXT. Example URL: jdbc:h2:~/test;STORAGE=TEXT

Graceful Handling of Low Disk Space Situations

The database is able to deal with situations where the disk space available is running low. Whenever the database starts, an
'emergency space' file is created (size is 1 MB), and if there is no more space available, the file will shrink. If the space available
is lower than 128 KB, the database will go into a special read only mode, where writing operations are no longer allowed: All
writing operations will throw the exception 'No disk space available' from this point on. To go back to the normal operating
mode, all connections to the database need to be closed first, and space needs to be freed up.

It is possible to install a database event listener to detect low disk space situations early on (when only 1 MB if space is
available). To do this, use the SQL statement SET DATABASE_EVENT_LISTENER. The listener can also be set at connection
time, using an URL of the form jdbc:h2:~/test; DATABASE_EVENT_LISTENER='com.acme.DbListener' (the quotes around the
class name are required). See also the DatabaseEventListener API.

Opening a Corrupted Database

If a database cannot be opened because the boot info (the SQL script that is run at startup) is corrupted, then the database
can be opened by specifying a database event listener. The exceptions are logged, but opening the database will continue.

Computed Columns / Function Based Index

Function indexes are not directly supported by this database, but they can be easily emulated by using computed columns. For
example, if an index on the upper-case version of a column is required, just create a computed column with the upper-case
version of the original column, and index this column:

CREATE TABLE ADDRESS(
ID INT PRIMARY KEY,
NAME VARCHAR,
UPPER_NAME VARCHAR AS UPPER(NAME)

CREATE INDEX IDX_U_NAME ON ADDRESS(UPPER_NAME);

When inserting data, it is not required (better: not allowed) to specify a value for the upper-case version of the column,
because the value is generated. But you can use the column when querying the table:

INSERT INTO ADDRESS(ID, NAME) VALUES(1, 'Miller');
SELECT * FROM ADDRESS WHERE UPPER_NAME='MILLER";

42 of 144

Multi-Dimensional Indexes

A tool is provided to execute efficient multi-dimension (spatial) range queries. This database does not support a specialized
spatial index (R-Tree or similar). Instead, the B-Tree index is used. For each record, the multi-dimensional key is converted
(mapped) to a single dimensional (scalar) value. This value specifies the location on a space-filling curve.

Currently, Z-order (also called N-order or Morton-order) is used; Hilbert curve could also be used, but the implementation is
more complex. The algorithm to convert the multi-dimensional value is called bit-interleaving. The scalar value is indexed using
a B-Tree index (usually using a computed column).

The method can result in a drastic performance improvement over just using an index on the first column. Depending on the
data and number of dimensions, the improvement is usually higher than factor 5. The tool generates a SQL query from a
specified multi-dimensional range. The method used is not database dependent, and the tool can easily be ported to other
databases. For an example how to use the tool, please have a look at the sample code provided in TestMultiDimension.java.

Using Passwords

Using Secure Passwords

Remember that weak passwords can be broken no matter of the encryption and security protocol. Don't use passwords that can
be found in a dictionary. Also appending numbers does not make them secure. A way to create good passwords that can be
remembered is, take the first letters of a sentence, use upper and lower case characters, and creatively include special
characters. Example:

i'sE2rtPiUKLT (it's easy to remember this password if you know the trick)

Passwords: Using Char Arrays instead of Strings

Java Strings are immutable objects and cannot be safely 'destroyed' by the application. After creating a String, it will remain in
the main memory of the computer at least until it is garbage collected. The garbage collection cannot be controlled by the
application, and even if it is garbage collected the data may still remain in memory. It might also be possible that the part of
memory containing the password is swapped to disk (because not enough main memory is available).

An attacker might have access to the swap file of the operating system. It is therefore a good idea to use char arrays instead of
Strings to store passwords. Char arrays can be cleared (filled with zeros) after use, and therefore the password will not be
stored in the swap file.

This database supports using char arrays instead of String to pass user and file passwords. The following code can be used to
do that:

Class.forName("org.h2.Driver");
String url = "jdbc:h2:~/simple";
String user = "sam";
char[] password =
{It'lui'l'all'slll&'/E'l'tlllrlllpl};
Properties prop = new Properties();
prop.setProperty("user", user);
prop.put("password", password);
Connection conn = null;
try {

conn = DriverManager.

getConnection(url, prop);

} finally {
Arrays.fill(password, 0);

In this example, the password is hard code in the application, which is not secure of course. However, Java Swing supports a
way to get passwords using a char array (JPasswordField).

43 of 144

Passing the User Name and/or Password in the URL

Instead of passing the user name as a separate parameter as in Connection conn = DriverManager.
getConnection("jdbc:h2:~/test", "sa", "123"); the user name (and/or password) can be supplied in the URL itself: Connection
conn = DriverManager. getConnection("jdbc:h2:~/test;USER=sa;PASSWORD=123"); The settings in the URL override the
settings passed as a separate parameter.

User-Defined Functions and Stored Procedures

In addition to the built-in functions, this database supports user-defined Java functions. In this database, Java functions can be
used as stored procedures as well. A function must be declared (registered) before it can be used. Only static Java methods are
supported; both the class and the method must be public. Example Java method:

package org.h2.samples;

public class Function {
public static boolean isPrime(int value) {
return new BigInteger(String.valueOf(value)).isProbablePrime(100);

b
b

The Java function must be registered in the database by calling CREATE ALIAS:
CREATE ALIAS IS_PRIME FOR "org.h2.samples.Function.isPrime"

For a complete sample application, see src/test/org/h2/samples/Function.java.

Function Data Type Mapping

Functions that accept non-nullable parameters such as 'int' will not be called if one of those parameters is NULL. In this case,
the value NULL is used as the result. If the function should be called in this case, you need to use 'java.lang.Integer' instead of
‘int'.

Functions that require a Connection

If the first parameter in a Java function is a java.sql.Connection, then the connection to database is provided. This connection
does not need to be closed before returning.

Functions throwing an Exception

If a function throws an Exception, then the current statement is rolled back and the exception is thrown to the application.

Functions returning a Result Set

Functions may returns a result set. Such a function can be called with the CALL statement:

public static ResultSet query(Connection conn, String sql) throws SQLException {
return conn.createStatement().executeQuery(sql);

b

CREATE ALIAS QUERY FOR "org.h2.samples.Function.query";
CALL QUERY('SELECT * FROM TEST");

44 of 144

Using SimpleResultSet

A function that returns a result set can create this result set from scratch using the SimpleResultSet tool:

import org.h2.tools.SimpleResultSet;

public static ResultSet simpleResultSet() throws SQLException {
SimpleResultSet rs = new SimpleResultSet();
rs.addColumn("ID", Types.INTEGER, 10, 0);
rs.addColumn("NAME", Types.VARCHAR, 255, 0);
rs.addRow(new Object[] { new Integer(0), "Hello" });
rs.addRow(new Object[] { new Integer(1), "World" });
return rs;

b

CREATE ALIAS SIMPLE FOR "org.h2.samples.Function.simpleResultSet";
CALL SIMPLE();

Using a Function as a Table

A function returning a result set can be like a table. However, in this case the function is called at least twice: First while
parsing the statement to collect the column names (with parameters set to null where not known at compile time). And then,
while executing the statement to get the data (may be repeatedly if this is a join). If the function is called just to get the
column list, the URL of the connection passed to the function is jdbc:columnlist:connection. Otherwise, the URL of the
connection is jdbc:default:connection.

public static ResultSet getMatrix(Integer id) throws SQLException {
SimpleResultSet rs = new SimpleResultSet();
rs.addColumn("X", Types.INTEGER, 10, 0);
rs.addColumn("Y", Types.INTEGER, 10, 0);
if(id == null) {
return rs;
b
for(int x = 0; x < id.intValue(); x++) {
for(inty = 0; y < id.intValue(); y++) {
rs.addRow(new Object[] { new Integer(x), new Integer(y) });
b

}

return rs;

b

CREATE ALIAS MATRIX FOR "org.h2.samples.Function.getMatrix";
SELECT * FROM MATRIX(3) WHERE X>0;

Triggers

This database supports Java triggers that are called before or after a row is updated, inserted or deleted. Triggers can be used
for complex consistency checks, or to update related data in the database. It is also possible to use triggers to simulate
materialized views. For a complete sample application, see src/test/org/h2/samples/TriggerSample.java. A Java trigger must
implement the interface org.h2.api.Trigger:

import org.h2.api.Trigger;

public class TriggerSample implements Trigger {
public void init(String triggerName, String tableName) {

public void fire(Connection conn,

Object[] oldRow, Object[] newRow)
throws SQLException {

45 of 144

The connection can be used to query or update data in other tables. The trigger then needs to be defined in the database:

CREATE TRIGGER INV_INS AFTER INSERT ON INVOICE
FOR EACH ROW CALL "org.h2.samples.TriggerSample"

The trigger can be used to veto a change, by throwing a SQL Exception.

Compacting a Database

Empty space in the database file is re-used automatically. To re-build the indexes, the simplest way is to delete the .index.db
file while the database is closed. However in some situations (for example after deleting a lot of data in a database), one
sometimes wants to shrink the size of the database (compact a database). Here is a sample function to do this:

public static void compact(String dir, String dbName,
String user, String password) throws Exception {
String url = "jdbc:h2:" + dir + "/" + dbName;
String file = "data/test.sql";
Script.execute(url, user, password, file);
DeleteDbFiles.execute(dir, dbName, true);
RunScript.execute(url, user, password, file, null, false);

See also the sample application org.h2.samples.Compact. The commands SCRIPT / RUNSCRIPT can be used as well to create a
backup of a database and re-build the database from the script.

Cache Settings

The database keeps most frequently used data and index pages in the main memory. The amount of memory used for caching
can be changed using the setting CACHE_SIZE. This setting can be set in the database connection URL
(jdbc:h2:~/test; CACHE_SIZE=131072), or it can be changed at runtime using SET CACHE_SIZE size.

This database supports two cache page replacement algorithms: LRU (the default) and 2Q. For LRU, the pages that were least
frequently used are removed from the cache if it becomes full. The 2Q algorithm is a bit more complicated: basically two
queues are used. The 2Q algorithm is more resistant to table scans, however the overhead is a bit higher compared to the LRU.
To use the cache algorithm 2Q, use a database URL of the form jdbc:h2:~/test; CACHE_TYPE=TQ. The cache algorithm cannot
be changed once the database is open.

To get information about page reads and writes, and the current caching algorithm in use, call SELECT * FROM
INFORMATION_SCHEMA.SETTINGS. The number of pages read / written is listed for the data and index file.

46 of 144

Performance

Performance Comparison
PolePosition Benchmark
Application Profiling
Database Profiling
Performance Tuning

Performance Comparison

In most cases H2 is a lot faster than all other (open source and not open source) database engines. Please note this is mostly a
single connection benchmark run on one computer.

Embedded

Test Case Unit H2 HSQLDB Derby
Simple: Init ‘ms 610 657 3187 |
Simple: Query (random) ~ ms 297 312 1828
Simple: Query (sequential) ms 203 266 1766
Simple: Update (random) 'ms 1078 1484 22031
‘Simple: Delete (sequential) Hms H234 H281 H7407 ‘
‘Simple: Memory Usage HMB H6 H7 Hll ‘
‘BenchA: Init Hms H859 H438 H4047 ‘
BenchA: Transactions ‘ms 5266 2875 17500 |
BenchA: Memory Usage ~ MB 9 14 10 |
BenchB: Init ‘ms 4016 2687 16875 |
‘BenchB: Transactions Hms H2609 H3282 H4250 ‘
‘BenchB: Memory Usage HMB H9 HIO HS ‘
BenchC: Init ‘ms 891 594 5766 |
BenchC: Transactions ‘ms 4359 75438 11718 |
‘BenchC: Memory Usage HMB H9 H18 H9 ‘
Executed statements # 594255 594255 594255 |
Total time ‘ms 20422 88314 96375 |
Statements per second # 29098 6728 6166

Client-Server

Test Case Unit H2 ~ HSQLDB Derby PostgreSQL MySQL
Simple: Init ‘ms 3125 3312|7140 5109 3594
Simple: Query (random) ~ 'ms 3390 3328 9953 5422 4812
Simple: Query (sequential) ms 3235 3219 9813 529 3969
‘Simple: Update (random) Hms H3437 H4562 H26594 H6766 H5703 ‘
Simple: Delete (sequential) ms 1391 1625 9343 2750 2004
‘Simple: Memory Usage HMB H7 H7 H13 HO Hl ‘
BenchA: Init ‘ms 2781 2954 7828 4875 3859
BenchA: Transactions ‘ms 13015 11718 30031 17672 13187
BenchA: Memory Usage ~ MB 9 17 10 1 1 |
BenchB: Init ‘ms 12000 13047 30562 20687 15328

47 of 144

BenchB: Transactions ‘ms 5375 3688 8063 6250 4594
‘BenchB: Memory Usage HMB HlO le HS Hl Hl ‘
BenchC: Init ‘ms 2390 1875 7015 2515 4062
BenchC: Transactions ‘ms 11391 77922 23766 13203 8141
BenchC: Memory Usage ~ MB 11 18 15 1 1 |
Executed statements # 594255 594255 594255 594255 594255 |
Total time ‘ms 61530 127250 170108 90545 69343
Statements per second ~ # 9657 4669 3493 6563 8569

Benchmark Results and Comments

H2

Version 1.0.78 (2008-08-28) was used for the test. For simpler operations, the performance of H2 is about the same as for
HSQLDB. For more complex queries, the query optimizer is very important. However H2 is not very fast in every case, certain
kind of queries may still be slow. One situation where is H2 is slow is large result sets, because they are buffered to disk if more
than a certain number of records are returned. The advantage of buffering is, there is no limit on the result set size. The
open/close time is almost fixed, because of the file locking protocol: The engine waits 20 ms after opening a database to ensure
the database files are not opened by another process.

HSQLDB

Version 1.8.0.10 was used for the test. Cached tables are used in this test (hsqldb.default_table_type=cached), and the write
delay is 1 second (SET WRITE_DELAY 1). HSQLDB is fast when using simple operations. HSQLDB is very slow in the last test
(BenchC: Transactions), probably because is has a bad query optimizer. One query where HSQLDB is slow is a two-table join:

SELECT COUNT(DISTINCT S_I_ID) FROM ORDER_LINE, STOCK
WHERE OL_W_ID=? AND OL_D_ID=? AND OL_O_ID<? AND OL_O_ID>=?
AND S_W_ID=? AND S_I_ID=OL_I_ID AND S_QUANTITY<?

The PolePosition benchmark also shows that the query optimizer does not do a very good job for some queries. A disadvantage
in HSQLDB is the slow startup / shutdown time (currently not listed) when using bigger databases. The reason is, a backup of
the database is created whenever the database is opened or closed.

Derby

Version 10.4.2.0 was used for the test. Derby is clearly the slowest embedded database in this test. This seems to be a
structural problem, because all operations are really slow. It will not be easy for the developers of Derby to improve the
performance to a reasonable level. A few problems have been identified: Leaving autocommit on is a problem for Derby. If it is
switched off during the whole test, the results are about 20% better for Derby.

PostgreSQL

Version 8.3.4 was used for the test. The following options where changed in postgresql.conf: fsync = off, commit_delay =
1000. PostgreSQL is run in server mode. It looks like the base performance is slower than MySQL, the reason could be the
network layer. The memory usage number is incorrect, because only the memory usage of the JDBC driver is measured.

MySQL

Version 5.0.67 was used for the test. MySQL was run with the InnoDB backend. The setting innodb_flush_log_at_trx_commit
(found in the my.ini file) was set to 0. Otherwise (and by default), MySQL is really slow (around 140 statements per second in
this test) because it tries to flush the data to disk for each commit. For small transactions (when autocommit is on) this is really
slow. But many use cases use small or relatively small transactions. Too bad this setting is not listed in the configuration wizard,
and it always overwritten when using the wizard. You need to change this setting manually in the file my.ini, and then restart
the service. The memory usage number is incorrect, because only the memory usage of the JDBC driver is measured.

48 of 144

Firebird

Firebird 1.5 (default installation) was tested, but the results are not published currently. It is possible to run the performance
test with the Firebird database, and any information on how to configure Firebird for higher performance are welcome.

Why Oracle / MS SQL Server / DB2 are Not Listed

The license of these databases does not allow to publish benchmark results. This doesn't mean that they are fast. They are in
fact quite slow, and need a lot of memory. But you will need to test this yourself. SQLite was not tested because the JDBC
driver doesn't support transactions.

About this Benchmark

Number of Connections

This is mostly a single-connection benchmark. BenchB uses multiple connections; the other tests use one connection.

Real-World Tests

Good benchmarks emulate real-world use cases. This benchmark includes 3 test cases: A simple test case with one table and
many small updates / deletes. BenchA is similar to the TPC-A test, but single connection / single threaded (see also:
www.tpc.org). BenchB is similar to the TPC-B test, using multiple connections (one thread per connection). BenchC is similar to
the TPC-C test, but single connection / single threaded.

Comparing Embedded with Server Databases

This is mainly a benchmark for embedded databases (where the application runs in the same virtual machine than the database
engine). However MySQL and PostgreSQL are not Java databases and cannot be embedded into a Java application. For the
Java databases, both embedded and server modes are tested.

Test Platform

This test is run on Windows XP with the virus scanner switched off. The VM used is Sun JDK 1.5.

Multiple Runs

When a Java benchmark is run first, the code is not fully compiled and therefore runs slower than when running multiple times.
A benchmark should always run the same test multiple times and ignore the first run(s). This benchmark runs three times, but
only the last run is measured.

Memory Usage

It is not enough to measure the time taken, the memory usage is important as well. Performance can be improved in databases
by using a bigger in-memory cache, but there is only a limited amount of memory available on the system. HSQLDB tables are
kept fully in memory by default; this benchmark uses 'disk based' tables for all databases. Unfortunately, it is not so easy to
calculate the memory usage of PostgreSQL and MySQL, because they run in a different process than the test. This benchmark
currently does not print memory usage of those databases.

Delayed Operations

Some databases delay some operations (for example flushing the buffers) until after the benchmark is run. This benchmark
waits between each database tested, and each database runs in a different process (sequentially).

49 of 144

Transaction Commit / Durability

Durability means transaction committed to the database will not be lost. Some databases (for example MySQL) try to enforce
this by default by calling fsync() to flush the buffers, but most hard drives don't actually flush all data. Calling fsync() slows
down transaction commit a lot, but doesn't always make data durable. When comparing the results, it is important to think
about the effect. Many database suggest to 'batch' operations when possible. This benchmark switches off autocommit when
loading the data, and calls commit after each 1000 inserts. However many applications need 'short' transactions at runtime (a
commit after each update). This benchmark commits after each update / delete in the simple benchmark, and after each
business transaction in the other benchmarks. For databases that support delayed commits, a delay of one second is used.

Using Prepared Statements

Wherever possible, the test cases use prepared statements.

Currently Not Tested: Startup Time

The startup time of a database engine is important as well for embedded use. This time is not measured currently. Also, not
tested is the time used to create a database and open an existing database. Here, one (wrapper) connection is opened at the
start, and for each step a new connection is opened and then closed. That means the Open/Close time listed is for opening a
connection if the database is already in use.

PolePosition Benchmark

The PolePosition is an open source benchmark. The algorithms are all quite simple. It was developed / sponsored by db4o.

Test Case Unit H2 ~ HSQLDB MySQL
Melbourne write ms 369 249 2022
‘Melbourne read Hms H47 H49 H93 ‘
‘Melbourne read_hot Hms H24 H43 H95 ‘
‘Melbourne delete Hms H147 H133 H176 ‘
‘Sepang write Hms H965 H1201 H3213 ‘
‘Sepang read Hms H765 H948 H3455 ‘
‘Sepang read_hot Hms H789 H859 H3563 ‘
Sepang delete ‘ms 1384 1596 6214 |
Bahrain write ms 1186 1387 6904
‘Bahrain query_indexed_string Hms H336 H170 H693 ‘
Bahrain query_string ms 18064 39703 41243
‘Bahrain query_indexed_int Hms H104 H134 H678 ‘
‘Bahrain update Hms H191 H87 H159 ‘
Bahrain delete ms 1215 729 6812
‘Imola retrieve Hms H198 H194 H4036 ‘
‘Barcelona write Hms H413 H832 H3191 ‘
‘Barcelona read Hms H119 H160 H1177 ‘
‘Barcelona query Hms HZO H5169 H101 ‘
‘Barcelona delete Hms H388 H319 H3287 ‘
Total ms 26724 53962 87112 |

50 of 144

Application Profiling

Analyze First

Before trying to optimize the performance, it is important to know where the time is actually spent. The same is true for
memory problems. Premature or 'blind' optimization should be avoided, as it is not an efficient way to solve the problem. There
are various ways to analyze the application. In some situations it is possible to compare two implementations and use
System.currentTimeMillis() to find out which one is faster. But this does not work for complex applications with many modules,
and for memory problems.

A very good tool to measure both the memory and the CPU is the YourKit Java Profiler . This tool is also used to optimize the
performance and memory footprint of this database engine.

A simple way to profile an application is to use the built-in profiling tool of java. Example:

java -Xrunhprof:cpu=samples,depth=16 com.acme.Test

Unfortunately, it is only possible to profile the application from start to end.

Database Profiling

The ConvertTraceFile tool generates SQL statement statistics at the end of the SQL script file. The format used is similar to the
profiling data generated when using java -Xrunhprof. As an example, execute the the following script using the H2 Console:

SET TRACE_LEVEL_FILE 3;

DROP TABLE IF EXISTS TEST;

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
@LOOP 1000 INSERT INTO TEST VALUES(?, ?);

SET TRACE_LEVEL_FILE 0;

Now convert the .trace.db file using the ConvertTraceFile tool:

java -cp h2.jar org.h2.tools.ConvertTraceFile
-traceFile "~/test.trace.db" -script "~/test.sql"

The generated file test.sqgl will contain the SQL statements as well as the following profiling data (results vary):

-- SQL Statement Statistics

-- time: total time in milliseconds (accumulated)
-- count: how many times the statement ran

-- result: total update count or row count

- self accu time count result sql

- 62% 62% 158 1000 1000 INSERT INTO TEST VALUES(?, ?);

- 37% 100% 93 1 0 CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
- 0% 100% 0 1 0 DROP TABLE IF EXISTS TEST;

- 0% 100% 0 1 0 SET TRACE_LEVEL_FILE 3;

51 of 144

http://www.yourkit.com/

Database Performance Tuning

Virus Scanners

Some virus scanners scan files every time they are accessed. It is very important for performance that database files are not
scanned for viruses. The database engine does never interprets the data stored in the files as programs, that means even if
somebody would store a virus in a database file, this would be harmless (when the virus does not run, it cannot spread). Some
virus scanners allow excluding file endings. Make sure files ending with .db are not scanned.

Using the Trace Options

If the main performance hot spots are in the database engine, in many cases the performance can be optimized by creating
additional indexes, or changing the schema. Sometimes the application does not directly generate the SQL statements, for
example if an O/R mapping tool is used. To view the SQL statements and JDBC API calls, you can use the trace options. For
more information, see Using the Trace Options .

Index Usage

This database uses indexes to improve the performance of SELECT, UPDATE and DELETE statements. If a column is used in the
WHERE clause of a query, and if an index exists on this column, then the index can be used. Multi-column indexes are used if
all or the first columns of the index are used. Both equality lookup and range scans are supported. Indexes are not used to
order result sets: The results are sorted in memory if required. Indexes are created automatically for primary key and unique
constraints. Indexes are also created for foreign key constraints, if required. For other columns, indexes need to be created
manually using the CREATE INDEX statement.

Optimizer

This database uses a cost based optimizer. For simple and queries and queries with medium complexity (less than 7 tables in
the join), the expected cost (running time) of all possible plans is calculated, and the plan with the lowest cost is used. For
more complex queries, the algorithm first tries all possible combinations for the first few tables, and the remaining tables added
using a greedy algorithm (this works well for most joins). Afterwards a genetic algorithm is used to test at most 2000 distinct
plans. Only left-deep plans are evaluated.

Expression Optimization

After the statement is parsed, all expressions are simplified automatically if possible. Operations are evaluated only once if all
parameters are constant. Functions are also optimized, but only if the function is constant (always returns the same result for
the same parameter values). If the WHERE clause is always false, then the table is not accessed at all.

COUNT(*) Optimization

If the query only counts all rows of a table, then the data is not accessed. However, this is only possible if no WHERE clause is
used, that means it only works for queries of the form SELECT COUNT(*) FROM table.

Updating Optimizer Statistics / Column Selectivity

When executing a query, at most one index per joined table can be used. If the same table is joined multiple times, for each
join only one index is used. Example: for the query SELECT * FROM TEST T1, TEST T2 WHERE T1.NAME='A" AND T2.ID=T1.ID,
two index can be used, in this case the index on NAME for T1 and the index on ID for T2.

If a table has multiple indexes, sometimes more than one index could be used. Example: if there is a table TEST(ID, NAME,
FIRSTNAME) and an index on each column, then two indexes could be used for the query SELECT * FROM TEST WHERE
NAME='A" AND FIRSTNAME='B', the index on NAME or the index on FIRSTNAME. It is not possible to use both indexes at the
same time. Which index is used depends on the selectivity of the column. The selectivity describes the 'uniqueness' of values in
a column. A selectivity of 100 means each value appears only once, and a selectivity of 1 means the same value appears in
many or most rows. For the query above, the index on NAME should be used if the table contains more distinct names than first
names.

52 of 144

The SQL statement ANALYZE can be used to automatically estimate the selectivity of the columns in the tables. This command
should be run from time to time to improve the query plans generated by the optimizer.

Optimization Examples

See src/test/org/h2/samples/optimizations.sql for a few examples of queries that benefit from special optimizations built into
the database.

53 of 144

Advanced Topics

Result Sets

Large Objects

Linked Tables

Transaction Isolation

Multi-Version Concurrency Control (MVCC)
Clustering / High Availability

Two Phase Commit

Compatibility

Standards Compliance

Run as Windows Service

ODBC Driver

Using H2 in Microsoft .NET

ACID

Durability Problems

Using the Recover Tool

File Locking Protocols

Protection against SQL Injection
Restricting Class Loading and Usage
Security Protocols

SSL/TLS Connections

Universally Unique Identifiers (UUID)
Settings Read from System Properties
Setting the Server Bind Address
Limitations

Glossary and Links

Result Sets

Limiting the Number of Rows

Before the result is returned to the application, all rows are read by the database. Server side cursors are not supported
currently. If only the first few rows are interesting for the application, then the result set size should be limited to improve the
performance. This can be done using LIMIT in a query (example: SELECT * FROM TEST LIMIT 100), or by using
Statement.setMaxRows(max).

Large Result Sets and External Sorting

For large result set, the result is buffered to disk. The threshold can be defined using the statement SET MAX_MEMORY_ROWS.
If ORDER BY is used, the sorting is done using an external sort algorithm. In this case, each block of rows is sorted using quick
sort, then written to disk; when reading the data, the blocks are merged together.

Large Objects

Storing and Reading Large Objects

If it is possible that the objects don't fit into memory, then the data type CLOB (for textual data) or BLOB (for binary data)
should be used. For these data types, the objects are not fully read into memory, by using streams. To store a BLOB, use
PreparedStatement.setBinaryStream. To store a CLOB, use PreparedStatement.setCharacterStream. To read a BLOB, use
ResultSet.getBinaryStream, and to read a CLOB, use ResultSet.getCharacterStream. If the client/server mode is used, the BLOB
and CLOB data is fully read into memory when accessed. In this case, the size of a BLOB or CLOB is limited by the memory.

54 of 144

Linked Tables

This database supports linked tables, which means tables that don't exist in the current database but are just links to another
database. To create such a link, use the CREATE LINKED TABLE statement:

CREATE LINKED TABLE LINK('org.postgresql.Driver', 'jdbc:postgresgl:test’, 'sa’, 'sa', 'TEST");

You can then access the table in the usual way. Whenever the linked table is accessed, the database issues specific queries
over JDBC. Using the example above, if you issue the query SELECT * FROM LINK WHERE ID=1 , then the following query is
run against the PostgreSQL database: SELECT * FROM TEST WHERE ID="? . The same happens for insert and update
statements. Only simple statements are executed against the target database, that means no joins. Prepared statements are
used where possible.

To view the statements that are executed against the target table, set the trace level to 3.

There is a restriction when inserting data to this table: When inserting or updating rows into the table, NULL and values that
are not set in the insert statement are both inserted as NULL. This may not have the desired effect if a default value in the
target table is other than NULL.

If multiple linked tables point to the same database (using the same database URL), the connection is shared. To disable this,
set the system property h2.shareLinkedConnections to false.

The CREATE LINKED TABLE statement supports an optional schema name parameter. See the grammar for details.

Transaction Isolation
This database supports the following transaction isolation levels:

¢ Read Committed

This is the default level. Read locks are released immediately. Higher concurrency is possible when using this level.

To enable, execute the SQL statement 'SET LOCK_MODE 3'

or append ;LOCK_MODE=3 to the database URL: jdbc:h2:~/test;LOCK_MODE=3
* Serializable

To enable, execute the SQL statement 'SET LOCK_MODE 1'

or append ;LOCK_MODE=1 to the database URL: jdbc:h2:~/test;LOCK_MODE=1
* Read Uncommitted

This level means that transaction isolation is disabled.

To enable, execute the SQL statement 'SET LOCK_MODE 0'

or append ;LOCK_MODE=0 to the database URL: jdbc:h2:~/test;LOCK_MODE=0

When using the isolation level 'serializable’, dirty reads, non-repeatable reads, and phantom reads are prohibited.

» Dirty Reads
Means a connection can read uncommitted changes made by another connection.
Possible with: read uncommitted
* Non-Repeatable Reads
A connection reads a row, another connection changes a row and commits, and the first connection re-reads the same
row and gets the new result.
Possible with: read uncommitted, read committed
+ Phantom Reads
A connection reads a set of rows using a condition, another connection inserts a row that falls in this condition and
commits, then the first connection re-reads using the same condition and gets the new row.
Possible with: read uncommitted, read committed

Table Level Locking

The database allows multiple concurrent connections to the same database. To make sure all connections only see consistent
data, table level locking is used by default. This mechanism does not allow high concurrency, but is very fast. Shared locks and
exclusive locks are supported. Before reading from a table, the database tries to add a shared lock to the table (this is only
possible if there is no exclusive lock on the object by another connection). If the shared lock is added successfully, the table can

55 of 144

be read. It is allowed that other connections also have a shared lock on the same object. If a connection wants to write to a
table (update or delete a row), an exclusive lock is required. To get the exclusive lock, other connection must not have any
locks on the object. After the connection commits, all locks are released. This database keeps all locks in memory.

Lock Timeout

If a connection cannot get a lock on an object, the connection waits for some amount of time (the lock timeout). During this
time, hopefully the connection holding the lock commits and it is then possible to get the lock. If this is not possible because
the other connection does not release the lock for some time, the unsuccessful connection will get a lock timeout exception.
The lock timeout can be set individually for each connection.

Multi-Version Concurrency Control (MVCC)

The MVCC feature allows higher concurrency than using (table level or row level) locks. When using MVCC in this database,
delete, insert and update operations will only issue a shared lock on the table. An exclusive lock is still used when adding or
removing columns, when dropping the table, and when using SELECT ... FOR UPDATE. Connections only 'see' committed data,
and own changes. That means, if connection A updates a row but doesn't commit this change yet, connection B will see the old
value. Only when the change is committed, the new value is visible by other connections (read committed). If multiple
connections concurrently try to update the same row, this database fails fast: a concurrent update exception is thrown.

To use the MVCC feature, append MVCC=TRUE to the database URL:
jdbc:h2:~/test; MVCC=TRUE

MVCC can not be used at the same time as MULTI_THREADED. The MVCC feature is not fully tested yet.

Clustering / High Availability

This database supports a simple clustering / high availability mechanism. The architecture is: two database servers run on two
different computers, and on both computers is a copy of the same database. If both servers run, each database operation is
executed on both computers. If one server fails (power, hardware or network failure), the other server can still continue to
work. From this point on, the operations will be executed only on one server until the other server is back up.

Clustering can only be used in the server mode (the embedded mode does not support clustering). It is possible to restore the
cluster without stopping the server, however it is critical that no other application is changing the data in the first database
while the second database is restored, so restoring the cluster is currently a manual process.

To initialize the cluster, use the following steps:

* Create a database

» Use the CreateCluster tool to copy the database to another location and initialize the clustering. Afterwards, you have
two databases containing the same data.

« Start two servers (one for each copy of the database)

* You are now ready to connect to the databases with the client application(s)

Using the CreateCluster Tool

To understand how clustering works, please try out the following example. In this example, the two databases reside on the
same computer, but usually, the databases will be on different servers.

» Create two directories: serverl and server2. Each directory will simulate a directory on a computer.
« Start a TCP server pointing to the first directory. You can do this using the command line:

java org.h2.tools.Server
-tcp -tcpPort 9101

56 of 144

-baseDir serverl

» Start a second TCP server pointing to the second directory. This will simulate a server running on a second
(redundant) computer. You can do this using the command line:

java org.h2.tools.Server
-tcp -tcpPort 9102
-baseDir server2

« Use the CreateCluster tool to initialize clustering. This will automatically create a new, empty database if it does not
exist. Run the tool on the command line:

java org.h2.tools.CreateCluster
-urlSource jdbc:h2:tcp://localhost:9101/~/test
-urlTarget jdbc:h2:tcp://localhost: 9102/~ /test
-user sa
-serverlList localhost:9101,localhost:9102

* You can now connect to the databases using an application or the H2 Console using the JDBC URL
jdbc:h2:tcp://localhost:9101,localhost:9102/~/test

« If you stop a server (by killing the process), you will notice that the other machine continues to work, and therefore
the database is still accessible.

» To restore the cluster, you first need to delete the database that failed, then restart the server that was stopped, and
re-run the CreateCluster tool.

Clustering Algorithm and Limitations

Read-only queries are only executed against the first cluster node, but all other statements are executed against all nodes.
There is currently no load balancing made to avoid problems with transactions. The following functions may yield different
results on different cluster nodes and must be executed with care: RANDOM_UUID(), SECURE_RAND(), SESSION_ID(),
MEMORY_FREE(), MEMORY_USED(), CSVREAD(), CSVWRITE(), RAND() [when not using a seed]. Those functions should not be
used directly in modifying statements (for example INSERT, UPDATE, or MERGE). However, they can be used in read-only
statements and the result can then be used for modifying statements.

Two Phase Commit
The two phase commit protocol is supported. 2-phase-commit works as follows:

* Autocommit needs to be switched off

« A transaction is started, for example by inserting a row

» The transaction is marked 'prepared' by executing the SQL statement PREPARE COMMIT transactionName

» The transaction can now be committed or rolled back

« If a problem occurs before the transaction was successfully committed or rolled back (for example because a network
problem occurred), the transaction is in the state 'in-doubt'

* When re-connecting to the database, the in-doubt transactions can be listed with SELECT * FROM
INFORMATION_SCHEMA.IN_DOUBT

« Each transaction in this list must now be committed or rolled back by executing COMMIT TRANSACTION
transactionName or ROLLBACK TRANSACTION transactionName

* The database needs to be closed and re-opened to apply the changes

Compatibility

This database is (up to a certain point) compatible to other databases such as HSQLDB, MySQL and PostgreSQL. There are
certain areas where H2 is incompatible.

57 of 144

Transaction Commit when Autocommit is On

At this time, this database engine commits a transaction (if autocommit is switched on) just before returning the result. For a
query, this means the transaction is committed even before the application scans through the result set, and before the result
set is closed. Other database engines may commit the transaction in this case when the result set is closed.

Keywords / Reserved Words

There is a list of keywords that can't be used as identifiers (table names, column names and so on), unless they are quoted
(surrounded with double quotes). The list is currently:

CURRENT_TIMESTAMP, CURRENT_TIME, CURRENT_DATE, CROSS, DISTINCT, EXCEPT, EXISTS, FROM, FOR, FALSE, FULL,
GROUP, HAVING, INNER, INTERSECT, IS, JOIN, LIKE, MINUS, NATURAL, NOT, NULL, ON, ORDER, PRIMARY, ROWNUM,
SELECT, SYSDATE, SYSTIME, SYSTIMESTAMP, TODAY, TRUE, UNION, WHERE

Certain words of this list are keywords because they are functions that can be used without '()' for compatibility, for example
CURRENT_TIMESTAMP.

Standards Compliance

This database tries to be as much standard compliant as possible. For the SQL language, ANSI/ISO is the main standard. There
are several versions that refer to the release date: SQL-92, SQL:1999, and SQL:2003. Unfortunately, the standard
documentation is not freely available. Another problem is that important features are not standardized. Whenever this is the
case, this database tries to be compatible to other databases.

Run as Windows Service

Using a native wrapper / adapter, Java applications can be run as a Windows Service. There are various tools available to do
that. The Java Service Wrapper from Tanuki Software, Inc. (http://wrapper.tanukisoftware.org) is included in the installation.
Batch files are provided to install, start, stop and uninstall the H2 Database Engine Service. This service contains the TCP Server
and the H2 Console web application. The batch files are located in the directory H2/service.

Install the Service

The service needs to be registered as a Windows Service first. To do that, double click on 1_install_service.bat. If successful, a
command prompt window will pop up and disappear immediately. If not, a message will appear.

Start the Service

You can start the H2 Database Engine Service using the service manager of Windows, or by double clicking on
2_start_service.bat. Please note that the batch file does not print an error message if the service is not installed.

Connect to the H2 Console

After installing and starting the service, you can connect to the H2 Console application using a browser. Double clicking on
3_start_browser.bat to do that. The default port (8082) is hard coded in the batch file.

Stop the Service

To stop the service, double click on 4_stop_service.bat. Please note that the batch file does not print an error message if the
service is not installed or started.

58 of 144

http://wrapper.tanukisoftware.org/

Uninstall the Service

To uninstall the service, double click on 5_uninstall_service.bat. If successful, a command prompt window will pop up and
disappear immediately. If not, a message will appear.

ODBC Driver

This database does not come with its own ODBC driver at this time, but it supports the PostgreSQL network protocol.
Therefore, the PostgreSQL ODBC driver can be used. Support for the PostgreSQL network protocol is quite new and should be
viewed as experimental. It should not be used for production applications.

At this time, the PostgreSQL ODBC driver does not work on 64 bit versions of Windows. For more information, see: ODBC
Driver on Windows 64 bit

ODBC Installation

First, the ODBC driver must be installed. Any recent PostgreSQL ODBC driver should work, however version 8.2
(psqlodbc-08_02*) or newer is recommended. The Windows version of the PostgreSQL ODBC driver is available at
http://www.postgresql.org/ftp/odbc/versions/msi .

Starting the Server

After installing the ODBC driver, start the H2 Server using the command line:
java -cp h2.jar org.h2.tools.Server

The PG Server (PG for PostgreSQL protocol) is started as well. By default, databases are stored in the current working directory
where the server is started. Use -baseDir to save databases in another directory, for example the user home directory:

java -cp h2.jar org.h2.tools.Server -baseDir ~
The PG server can be started and stopped from within a Java application as follows:

Server server = Server.createPgServer(new String[]{"-baseDir", "~"});
server.start();

server.stop();

By default, only connections from localhost are allowed. To allow remote connections, use -pgAllowOthers true when starting
the server.

ODBC Configuration

After installing the driver, a new Data Source must be added. In Windows, run odbcad32.exe to open the Data Source
Administrator. Then click on 'Add..." and select the PostgreSQL Unicode driver. Then click 'Finish'. You will be able to change the
connection properties:

Property Example Remarks

Data Source H2 Test The name of the ODBC Data Source
The database name. Only simple names are supported at this time;
relative or absolute path are not supported in the database name.

Database test By default, the database is stored in the current working directory
where the Server is started except when the -baseDir setting is used.
The name must be at least 3 characters.

Server localhost The server name or IP address.

59 of 144

http://www.postgresql.org/ftp/odbc/versions/msi
http://svr5.postgresql.org/pgsql-odbc/2005-09/msg00127.php
http://svr5.postgresql.org/pgsql-odbc/2005-09/msg00127.php

By default, only remote connections are allowed

User Name sa The database user name.

SSL Mode disabled At this time, SSL is not supported.

Port 5435 The port where the PG Server is listening.
Password sa The database password.

Afterwards, you may use this data source.

PG Protocol Support Limitations

At this time, only a subset of the PostgreSQL network protocol is implemented. Also, there may be compatibility problems on
the SQL level, with the catalog, or with text encoding. Problems are fixed as they are found. Currently, statements can not be
canceled when using the PG protocol.

PostgreSQL ODBC Driver Setup requires a database password; that means it is not possible to connect to H2 databases without
password. This is a limitation of the ODBC driver.

Security Considerations

Currently, the PG Server does not support challenge response or encrypt passwords. This may be a problem if an attacker can
listen to the data transferred between the ODBC driver and the server, because the password is readable to the attacker. Also,
it is currently not possible to use encrypted SSL connections. Therefore the ODBC driver should not be used where security is
important.

Using H2 in Microsoft .NET

The database can be used from Microsoft .NET even without using Java, by using IKVM.NET. You can access a H2 database
on .NET using the JDBC API, or using the ADO.NET interface.

Using the ADO.NET APl on .NET

An implementation of the ADO.NET interface is available in the open source project H2Sharp .

Using the JDBC APl on .NET

¢ Install the .NET Framework from Microsoft . Mono has not yet been tested.

e Install IKVM.NET .

* Copy the h2.jar file to ikvm/bin

¢ Run the H2 Console using: ikvm -jar h2.jar

» Convert the H2 Console to an .exe file using: ikvmc -target:winexe h2.jar . You may ignore the warnings.
* Create a .dll file using (change the version accordingly): ikvmc.exe -target:library -version:1.0.69.0 h2.jar

If you want your C# application use H2, you need to add the h2.dll and the IKVM.Open]DK.ClassLibrary.dll to your C# solution.
Here some sample code:

using System;
using java.sql;

class Test
{
static public void Main()
{
org.h2.Driver.load();
Connection conn = DriverManager.getConnection("jdbc:h2:~/test", "sa", "sa");
Statement stat = conn.createStatement();
ResultSet rs = stat.executeQuery("SELECT 'Hello World™);
while (rs.next())

60 of 144

http://www.ikvm.net/
http://www.microsoft.com/
http://code.google.com/p/h2sharp

{
Console.WriteLine(rs.getString(1));

by
b
b

ACID
In the database world, ACID stands for:

« Atomicity: Transactions must be atomic, meaning either all tasks are performed or none.
* Consistency: All operations must comply with the defined constraints.

« Isolation: Transactions must be isolated from each other.

« Durability: Committed transaction will not be lost.

Atomicity

Transactions in this database are always atomic.

Consistency

This database is always in a consistent state. Referential integrity rules are always enforced.

Isolation

For H2, as with most other database systems, the default isolation level is 'read committed'. This provides better performance,
but also means that transactions are not completely isolated. H2 supports the transaction isolation levels 'serializable’, 'read
committed', and 'read uncommitted'.

Durability

This database does not guarantee that all committed transactions survive a power failure. Tests show that all databases
sometimes lose transactions on power failure (for details, see below). Where losing transactions is not acceptable, a laptop or
UPS (uninterruptible power supply) should be used. If durability is required for all possible cases of hardware failure, clustering
should be used, such as the H2 clustering mode.

Durability Problems

Complete durability means all committed transaction survive a power failure. Some databases claim they can guarantee
durability, but such claims are wrong. A durability test was run against H2, HSQLDB, PostgreSQL, and Derby. All of those
databases sometimes lose committed transactions. The test is included in the H2 download, see org.h2.test.poweroff.Test.

Ways to (Not) Achieve Durability

Making sure that committed transactions are not lost is more complicated than it seems first. To guarantee complete durability,
a database must ensure that the log record is on the hard drive before the commit call returns. To do that, databases use
different methods. One is to use the 'synchronous write' file access mode. In Java, RandomAccessFile supports the modes "rws
and "rwd":

» rwd: Every update to the file's content is written synchronously to the underlying storage device.
« rws: In addition to rwd, every update to the metadata is written synchronously.

61 of 144

This feature is used by Derby. A test (org.h2.test.poweroff.TestWrite) with one of those modes achieves around 50 thousand
write operations per second. Even when the operating system write buffer is disabled, the write rate is around 50 thousand
operations per second. This feature does not force changes to disk because it does not flush all buffers. The test updates the
same byte in the file again and again. If the hard drive was able to write at this rate, then the disk would need to make at least
50 thousand revolutions per second, or 3 million RPM (revolutions per minute). There are no such hard drives. The hard drive
used for the test is about 7200 RPM, or about 120 revolutions per second. There is an overhead, so the maximum write rate
must be lower than that.

Calling fsync flushes the buffers. There are two ways to do that in Java:

» FileDescriptor.sync(). The documentation says that this forces all system buffers to synchronize with the underlying
device. Sync is supposed to return after all in-memory modified copies of buffers associated with this FileDescriptor
have been written to the physical medium.

» FileChannel.force() (since JDK 1.4). This method is supposed to force any updates to this channel's file to be written to
the storage device that contains it.

By default, MySQL calls fsync for each commit. When using one of those methods, only around 60 write operations per second
can be achieved, which is consistent with the RPM rate of the hard drive used. Unfortunately, even when calling
FileDescriptor.sync() or FileChannel.force(), data is not always persisted to the hard drive, because most hard drives do not
obey fsync(): see Your Hard Drive Lies to You . In Mac OS X, fsync does not flush hard drive buffers. See Bad fsync? . So the
situation is confusing, and tests prove there is a problem.

Trying to flush hard drive buffers hard, and if you do the performance is very bad. First you need to make sure that the hard
drive actually flushes all buffers. Tests show that this can not be done in a reliable way. Then the maximum number of
transactions is around 60 per second. Because of those reasons, the default behavior of H2 is to delay writing committed
transactions.

In H2, after a power failure, a bit more than one second of committed transactions may be lost. To change the behavior, use
SET WRITE_DELAY and CHECKPOINT SYNC. Most other databases support commit delay as well. In the performance
comparison, commit delay was used for all databases that support it.

Running the Durability Test

To test the durability / non-durability of this and other databases, you can use the test application in the package
org.h2.test.poweroff. Two computers with network connection are required to run this test. One computer just listens, while the
test application is run (and power is cut) on the other computer. The computer with the listener application opens a TCP/IP port
and listens for an incoming connection. The second computer first connects to the listener, and then created the databases and
starts inserting records. The connection is set to 'autocommit', which means after each inserted record a commit is performed
automatically. Afterwards, the test computer notifies the listener that this record was inserted successfully. The listener
computer displays the last inserted record number every 10 seconds. Now, switch off the power manually, then restart the
computer, and run the application again. You will find out that in most cases, none of the databases contains all the records
that the listener computer knows about. For details, please consult the source code of the listener and test application.

Using the Recover Tool

The recover tool can be used to extract the contents of a data file, even if the database is corrupted. At this time, it does not
extract the content of the log file or large objects (CLOB or BLOB). To run the tool, type on the command line:

java org.h2.tools.Recover

For each database in the current directory, a text file will be created. This file contains raw insert statement (for the data) and
data definition (DDL) statement to recreate the schema of the database. This file cannot be executed directly, as the raw insert
statements don't have the correct table names, so the file needs to be pre-processed manually before executing.

62 of 144

http://lists.apple.com/archives/darwin-dev/2005/Feb/msg00072.html
http://hardware.slashdot.org/article.pl?sid=05/05/13/0529252

File Locking Protocols

Whenever a database is opened, a lock file is created to signal other processes that the database is in use. If database is
closed, or if the process that opened the database terminates, this lock file is deleted.

In special cases (if the process did not terminate normally, for example because there was a blackout), the lock file is not
deleted by the process that created it. That means the existence of the lock file is not a safe protocol for file locking. However,
this software uses a challenge-response protocol to protect the database files. There are two methods (algorithms)
implemented to provide both security (that is, the same database files cannot be opened by two processes at the same time)
and simplicity (that is, the lock file does not need to be deleted manually by the user). The two methods are 'file method' and
'socket methods'.

File Locking Method 'File’
The default method for database file locking is the 'File Method'. The algorithm is:

* When the lock file does not exist, it is created (using the atomic operation File.createNewfFile). Then, the process waits
a little bit (20ms) and checks the file again. If the file was changed during this time, the operation is aborted. This
protects against a race condition when a process deletes the lock file just after one create it, and a third process
creates the file again. It does not occur if there are only two writers.

« If the file can be created, a random number is inserted together with the locking method ('file"). Afterwards, a
watchdog thread is started that checks regularly (every second once by default) if the file was deleted or modified by
another (challenger) thread / process. Whenever that occurs, the file is overwritten with the old data. The watchdog
thread runs with high priority so that a change to the lock file does not get through undetected even if the system is
very busy. However, the watchdog thread does use very little resources (CPU time), because it waits most of the time.
Also, the watchdog only reads from the hard disk and does not write to it.

» If the lock file exists, and it was modified in the 20 ms, the process waits for some time (up to 10 times). If it was still
changed, an exception is thrown (database is locked). This is done to eliminate race conditions with many concurrent
writers. Afterwards, the file is overwritten with a new version (challenge). After that, the thread waits for 2 seconds. If
there is a watchdog thread protecting the file, he will overwrite the change and this process will fail to lock the
database. However, if there is no watchdog thread, the lock file will still be as written by this thread. In this case, the
file is deleted and atomically created again. The watchdog thread is started in this case and the file is locked.

This algorithm is tested with over 100 concurrent threads. In some cases, when there are many concurrent threads trying to
lock the database, they block each other (meaning the file cannot be locked by any of them) for some time. However, the file
never gets locked by two threads at the same time. However using that many concurrent threads / processes is not the
common use case. Generally, an application should throw an error to the user if it cannot open a database, and not try again in
a (fast) loop.

File Locking Method 'Socket'
There is a second locking mechanism implemented, but disabled by default. The algorithm is:

« If the lock file does not exist, it is created. Then a server socket is opened on a defined port, and kept open. The port
and IP address of the process that opened the database is written into the lock file.

« If the lock file exists, and the lock method is 'file', then the software switches to the 'file' method.

» If the lock file exists, and the lock method is 'socket’, then the process checks if the port is in use. If the original
process is still running, the port is in use and this process throws an exception (database is in use). If the original
process died (for example due to a blackout, or abnormal termination of the virtual machine), then the port was
released. The new process deletes the lock file and starts again.

This method does not require a watchdog thread actively polling (reading) the same file every second. The problem with this
method is, if the file is stored on a network share, two processes (running on different computers) could still open the same
database files, if they do not have a direct TCP/IP connection.

63 of 144

Protection against SQL Injection

What is SQL Injection

This database engine provides a solution for the security vulnerability known as 'SQL Injection'. Here is a short description of
what SQL injection means. Some applications build SQL statements with embedded user input such as:

String sql = "SELECT * FROM USERS WHERE PASSWORD=""+pwd+"";
ResultSet rs = conn.createStatement().executeQuery(sql);

If this mechanism is used anywhere in the application, and user input is not correctly filtered or encoded, it is possible for a
user to inject SQL functionality or statements by using specially built input such as (in this example) this password: ' OR "=". In
this case the statement becomes:

SELECT * FROM USERS WHERE PASSWORD=" OR "=";

Which is always true no matter what the password stored in the database is. For more information about SQL Injection, see
Glossary and Links.

Disabling Literals

SQL Injection is not possible if user input is not directly embedded in SQL statements. A simple solution for the problem above
is to use a PreparedStatement:

String sql = "SELECT * FROM USERS WHERE PASSWORD=?";
PreparedStatement prep = conn.prepareStatement(sql);
prep.setString(1, pwd);

ResultSet rs = prep.executeQuery();

This database provides a way to enforce usage of parameters when passing user input to the database. This is done by
disabling embedded literals in SQL statements. To do this, execute the statement:

SET ALLOW_LITERALS NONE;

Afterwards, SQL statements with text and number literals are not allowed any more. That means, SQL statement of the form
WHERE NAME='abc' or WHERE CustomerId=10 will fail. It is still possible to use PreparedStatements and parameters as
described above. Also, it is still possible to generate SQL statements dynamically, and use the Statement API, as long as the
SQL statements do not include literals. There is also a second mode where number literals are allowed: SET ALLOW_LITERALS
NUMBERS. To allow all literals, execute SET ALLOW_LITERALS ALL (this is the default setting). Literals can only be enabled or
disabled by an administrator.

Using Constants

Disabling literals also means disabling hard-coded 'constant’ literals. This database supports defining constants using the
CREATE CONSTANT command. Constants can be defined only when literals are enabled, but used even when literals are
disabled. To avoid name clashes with column names, constants can be defined in other schemas:

CREATE SCHEMA CONST AUTHORIZATION SA;
CREATE CONSTANT CONST.ACTIVE VALUE 'Active’;
CREATE CONSTANT CONST.INACTIVE VALUE 'Inactive’;
SELECT * FROM USERS WHERE TYPE=CONST.ACTIVE;

Even when literals are enabled, it is better to use constants instead of hard-coded number or text literals in queries or views.
With constants, typos are found at compile time, the source code is easier to understand and change.

64 of 144

Using the ZERO() Function

It is not required to create a constant for the number 0 as there is already a built-in function ZERO():

SELECT * FROM USERS WHERE LENGTH(PASSWORD)=ZERO();

Restricting Class Loading and Usage

By default there is no restriction on loading classes and executing Java code for admins. That means an admin may call system
functions such as System.setProperty by executing:

CREATE ALIAS SET_PROPERTY FOR "java.lang.System.setProperty";
CALL SET_PROPERTY('abc', '1");

CREATE ALIAS GET_PROPERTY FOR "java.lang.System.getProperty";
CALL GET_PROPERTY('abc");

To restrict users (including admins) from loading classes and executing code, the list of allowed classes can be set in the system
property h2.allowedClasses in the form of a comma separated list of classes or patterns (items ending with '*'). By default all
classes are allowed. Example:

java -Dh2.allowedClasses=java.lang.Math,com.acme.*

This mechanism is used for all user classes, including database event listeners, trigger classes, user-defined functions, user-
defined aggregate functions, and JDBC driver classes (with the exception of the H2 driver) when using the H2 Console.

Security Protocols

The following paragraphs document the security protocols used in this database. These descriptions are very technical and only
intended for security experts that already know the underlying security primitives.

User Password Encryption

When a user tries to connect to a database, the combination of user name, @, and password hashed using SHA-256, and this
hash value is transmitted to the database. This step does not try to an attacker from re-using the value if he is able to listen to
the (unencrypted) transmission between the client and the server. But, the passwords are never transmitted as plain text, even
when using an unencrypted connection between client and server. That means if a user reuses the same password for different
things, this password is still protected up to some point. See also 'RFC 2617 - HTTP Authentication: Basic and Digest Access
Authentication' for more information.

When a new database or user is created, a new cryptographically secure random salt value is generated. The size of the salt is
64 bit. Using the random salt reduces the risk of an attacker pre-calculating hash values for many different (commonly used)
passwords.

The combination of user-password hash value (see above) and salt is hashed using SHA-256. The resulting value is stored in
the database. When a user tries to connect to the database, the database combines user-password hash value with the stored
salt value and calculated the hash value. Other products use multiple iterations (hash the hash value again and again), but this
is not done in this product to reduce the risk of denial of service attacks (where the attacker tries to connect with bogus
passwords, and the server spends a lot of time calculating the hash value for each password). The reasoning is: if the attacker
has access to the hashed passwords, he also has access to the data in plain text, and therefore does not need the password
any more. If the data is protected by storing it on another computer and only remotely, then the iteration count is not required
at all.

65 of 144

File Encryption

The database files can be encrypted using two different algorithms: AES-128 and XTEA (using 32 rounds). The reasons for
supporting XTEA is performance (XTEA is about twice as fast as AES) and to have an alternative algorithm if AES is suddenly
broken.

When a user tries to connect to an encrypted database, the combination of the word 'file', @, and the file password is hashed
using SHA-256. This hash value is transmitted to the server.

When a new database file is created, a new cryptographically secure random salt value is generated. The size of the salt is 64
bit. The combination of the file password hash and the salt value is hashed 1024 times using SHA-256. The reason for the
iteration is to make it harder for an attacker to calculate hash values for common passwords.

The resulting hash value is used as the key for the block cipher algorithm (AES-128 or XTEA with 32 rounds). Then, an
initialization vector (IV) key is calculated by hashing the key again using SHA-256. This is to make sure the IV is unknown to
the attacker. The reason for using a secret 1V is to protect against watermark attacks.

Before saving a block of data (each block is 8 bytes long), the following operations are executed: First, the IV is calculated by
encrypting the block number with the IV key (using the same block cipher algorithm). This IV is combined with the plain text
using XOR. The resulting data is encrypted using the AES-128 or XTEA algorithm.

When decrypting, the operation is done in reverse. First, the block is decrypted using the key, and then the IV is calculated
combined with the decrypted text using XOR.

Therefore, the block cipher mode of operation is CBC (Cipher-block chaining), but each chain is only one block long. The
advantage over the ECB (Electronic codebook) mode is that patterns in the data are not revealed, and the advantage over multi
block CBC is that flipped cipher text bits are not propagated to flipped plaintext bits in the next block.

Database encryption is meant for securing the database while it is not in use (stolen laptop and so on). It is not meant for cases
where the attacker has access to files while the database is in use. When he has write access, he can for example replace
pieces of files with pieces of older versions and manipulate data like this.

File encryption slows down the performance of the database engine. Compared to unencrypted mode, database operations take
about 2.2 times longer when using XTEA, and 2.5 times longer using AES (embedded mode).

Wrong Password Delay

To protect against remote brute force password attacks, the delay after each unsuccessful login gets double as long. Use the
system properties h2.delayWrongPasswordMin and h2.delayWrongPasswordMax to change the minimum (the default is 250
milliseconds) or maximum delay (the default is 4000 milliseconds, or 4 seconds). The delay only applies for those using the
wrong password. Normally there is no delay for a user that knows the correct password, with one exception: after using the
wrong password, there is a delay of up (randomly distributed) the same delay as for a wrong password. This is to protect
against parallel brute force attacks, so that an attacker needs to wait for the whole delay. Delays are synchronized. This is also
required to protect against parallel attacks.

HTTPS Connections

The web server supports HTTP and HTTPS connections using SSLServerSocket. There is a default self-certified certificate to
support an easy starting point, but custom certificates are supported as well.

SSL/TLS Connections

Remote SSL/TLS connections are supported using the Java Secure Socket Extension (SSLServerSocket / SSLSocket). By default,
anonymous SSL is enabled. The default cipher suite is SSL_DH_anon_WITH_RC4_128 MDS5 .

To use your own keystore, set the system properties javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword before starting
the H2 server and client. See also Customizing the Default Key and Trust Stores, Store Types, and Store Passwords for more
information.

66 of 144

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

To disable anonymous SSL, set the system property h2.enableAnonymousSSL to false.

Universally Unique Identifiers (UUID)

This database supports the UUIDs. Also supported is a function to create new UUIDs using a cryptographically strong pseudo
random number generator. With random UUIDs, the chance of two having the same value can be calculated using the
probability theory. See also 'Birthday Paradox'. Standardized randomly generated UUIDs have 122 random bits. 4 bits are used
for the version (Randomly generated UUID), and 2 bits for the variant (Leach-Salz). This database supports generating such
UUIDs using the built-in function RANDOM_UUID(). Here is a small program to estimate the probability of having two identical
UUIDs after generating a number of values:

double x = Math.pow(2, 122);
for(int i=35; i<62; i++) {
double n = Math.pow(2, i);
double p = 1 - Math.exp(-(n*n)/(2*x));
String ps = String.valueOf(1+p).substring(1);
System.out.printin("2A"+i+"="+(1L<<i)+" probability: 0"+ps);
¥

Some values are:

27°36=68'719'476'736 probability: 0.000'000'000'000'000'4
2741=2'199'023'255'552 probability: 0.000'000'000'000'4
2746=70'368'744'177'664 probability: 0.000'000'000'4

To help non-mathematicians understand what those numbers mean, here a comparison: One's annual risk of being hit by a
meteorite is estimated to be one chance in 17 billion, that means the probability is about 0.000'000'000'06.

Settings Read from System Properties

Some settings of the database can be set on the command line using -DpropertyName=value. It is usually not required to
change those settings manually. The settings are case sensitive. Example:

java -Dh2.serverCachedObjects=256 org.h2.tools.Server

The current value of the settings can be read in the table INFORMATION_SCHEMA.SETTINGS.

For a complete list of settings, see SysProperties .

Setting the Server Bind Address

Usually server sockets accept connections on any/all local addresses. This may be a problem on multi-homed hosts. To bind
only to one address, use the system property h2.bindAddress. This setting is used for both regular server sockets and for SSL
server sockets. IPv4 and IPv6 address formats are supported.

Limitations

This database has the following known limitations:

67 of 144

file:///C:/data/h2database/h2/docs/javadoc/org/h2/constant/SysProperties.html

The maximum file size is currently 256 GB for the data, and 256 GB for the index. This number is excluding BLOB and
CLOB data: Every CLOB or BLOB can be up to 256 GB as well.

The maximum file size for FAT or FAT32 file systems is 4 GB. That means when using FAT or FAT32, the limit is 4 GB
for the data. This is the limitation of the file system, and this database does not provide a workaround for this
problem. The suggested solution is to use another file system.

There is a limit on the complexity of SQL statements. Statements of the following form will result in a stack overflow
exception:

SELECT * FROM DUAL WHERE X = 1
ORX=20RX=20RX=20RX=20RX =2
-- repeat previous line 500 times --

* There is no limit for the following entities, except the memory and storage capacity: maximum identifier length,
maximum number of tables, maximum number of columns, maximum number of indexes, maximum number of
parameters, maximum number of triggers, and maximum number of other database objects.

« For limitations on data types, see the documentation of the respective Java data type or the data type documentation
of this database.

Glossary and Links

Term
AES-128

Birthday
Paradox

Digest

GCJ
HTTPS

Modes of
Operation

Salt
SHA-256

SQL Injection

Watermark
Attack
SSL/TLS
XTEA

Description
A block encryption algorithm. See also: Wikipedia: AES

Describes the higher than expected probability that two persons in a room have the same birthday. Also valid
for randomly generated UUIDs. See also: Wikipedia: Birthday Paradox

Protocol to protect a password (but not to protect data). See also: RFC 2617: HTTP Digest Access
Authentication

GNU Compiler for Java. http://gcc.gnu.org/java/ and http://nativej.mtsystems.ch/ (not free any more)
A protocol to provide security to HTTP connections. See also: RFC 2818: HTTP Over TLS

Wikipedia: Block cipher modes of operation

Random number to increase the security of passwords. See also: Wikipedia: Key derivation function
A cryptographic one-way hash function. See also: Wikipedia: SHA hash functions

A security vulnerability where an application generates SQL statements with embedded user input. See also:
Wikipedia: SQL Injection

Security problem of certain encryption programs where the existence of certain data can be proven without
decrypting. For more information, search in the internet for 'watermark attack cryptoloop'

Secure Sockets Layer / Transport Layer Security. See also: Java Secure Socket Extension (JSSE)
A block encryption algorithm. See also: Wikipedia: XTEA

68 of 144

http://en.wikipedia.org/wiki/XTEA
http://java.sun.com/products/jsse/
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SHA_family
http://en.wikipedia.org/wiki/Key_derivation_function
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://www.ietf.org/rfc/rfc2818.txt
http://nativej.mtsystems.ch/
http://gcc.gnu.org/java/
http://www.faqs.org/rfcs/rfc2617.html
http://www.faqs.org/rfcs/rfc2617.html
http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

SQL Grammar

Commands (Data Manipulation)

SELECT
INSERT
UPDATE
DELETE
BACKUP
CALL
EXPLAIN
MERGE
RUNSCRIPT
SCRIPT

Commands (Data Definition)

ALTER INDEX RENAME

ALTER SEQUENCE

ALTER TABLE ADD

ALTER TABLE ADD CONSTRAINT

ALTER TABLE ALTER COLUMN

ALTER TABLE ALTER COLUMN RENAME
ALTER TABLE ALTER COLUMN RESTART
ALTER TABLE ALTER COLUMN SELECTIVITY
ALTER TABLE ALTER COLUMN SET DEFAULT
ALTER TABLE ALTER COLUMN SET NOT NULL
ALTER TABLE ALTER COLUMN SET NULL
ALTER TABLE DROP COLUMN

ALTER TABLE DROP CONSTRAINT
ALTER TABLE SET

ALTER TABLE RENAME

ALTER USER ADMIN

ALTER USER RENAME

ALTER USER SET PASSWORD

ALTER VIEW

ANALYZE

COMMENT

CREATE AGGREGATE

CREATE ALIAS

CREATE CONSTANT

CREATE DOMAIN

CREATE INDEX

CREATE LINKED TABLE

CREATE ROLE

CREATE SCHEMA

CREATE SEQUENCE

CREATE TABLE

CREATE TRIGGER

CREATE USER

CREATE VIEW

DROP AGGREGATE

DROP ALIAS

DROP ALL OBJECTS

DROP CONSTANT

DROP DOMAIN

DROP INDEX

DROP ROLE

DROP SCHEMA

DROP SEQUENCE

DROP TABLE

DROP TRIGGER

DROP USER

DROP VIEW

TRUNCATE TABLE

69 of 144

Commands (Other)

COMMIT

COMMIT TRANSACTION
CHECKPOINT

CHECKPOINT SYNC

GRANT RIGHT

GRANT ROLE

HELP

PREPARE COMMIT

REVOKE RIGHT

REVOKE ROLE

ROLLBACK

ROLLBACK TRANSACTION
SAVEPOINT

SET @

SET ALLOW_LITERALS

SET AUTOCOMMIT

SET CACHE_SIZE

SET CLUSTER

SET COLLATION

SET COMPRESS_LOB

SET DATABASE_EVENT_LISTENER
SET DB_CLOSE_DELAY

SET DEFAULT_LOCK_TIMEOUT
SET DEFAULT_TABLE_TYPE
SET EXCLUSIVE

SET IGNORECASE

SET LOCK_MODE

SET LOCK_TIMEOUT

SET LOG

SET MAX_LENGTH_INPLACE_LOB
SET MAX_LOG_SIZE

SET MAX_MEMORY_ROWS
SET MAX_MEMORY_UNDO

SET MAX_OPERATION_MEMORY
SET MODE

SET MULTI_THREADED

SET OPTIMIZE_REUSE_RESULTS
SET QUERY_TIMEOUT

SET PASSWORD

SET REFERENTIAL_INTEGRITY
SET SALT HASH

SET SCHEMA

SET SCHEMA_SEARCH_PATH
SET THROTTLE

SET TRACE_LEVEL

SET TRACE_MAX_FILE_SIZE
SET UNDO_LOG

SET WRITE_DELAY
SHUTDOWN

Other Grammar

Comments

Select Part

From Part

Constraint

Referential Constraint
Table Expression
Order

Expression

And Condition
Condition

Condition Right Hand Side
Compare

Operand

Summand

70 of 144

Factor

Term

Value

Case

Case When
Cipher

Select Expression
Data Type
Name

Alias

Quoted Name
String

Dollar Quoted String
Int

Long

Hex Number
Decimal
Double

Date

Time
Timestamp
Boolean
Bytes

Array

Null

Hex

Digit

System Tables

Information Schema
Range Table

SELECT

{SELECT selectPart FROM fromPart|FROM fromPart SELECT selectPart}
[WHERE expression]

[GROUP BY expression [,...]]

[HAVING expression]

[{UNION [ALL] | MINUS | EXCEPT | INTERSECT?} select]

[ORDER BY order [,...]]

[LIMIT expression [OFFSET expression] [SAMPLE_SIZE rowCountInt]]
[FOR UPDATE]

Selects data from a table or multiple tables.
If a sample size is specified, this limits the number of rows read for aggregate queries.
If FOR UPDATE is specified, the tables are locked for writing.

Example:
SELECT * FROM TEST

INSERT

INSERT INTO tableName [(columnName [,...])]
{VALUES {([{DEFAULT | expression} [,...]11)} [,...]
| select}

Inserts a new row / new rows into a table.

Example:
INSERT INTO TEST VALUES(1, 'Hello")

71 of 144

UPDATE

UPDATE tableName
SET {columnName= {DEFAULT | expression} } [,...]
[WHERE expression]

Updates data in a table.

Example:
UPDATE TEST SET NAME='Hi' WHERE ID=1

DELETE

DELETE FROM tableName [WHERE expression]

Deletes rows form a table.

Example:
DELETE FROM TEST WHERE ID=2

BACKUP

BACKUP TO fileNameString

Backs up the database files to a .zip file.
Objects are not locked.
Admin rights are required to execute this command.

Example:
BACKUP TO 'backup.zip'

CALL

CALL expression

Calculates a simple expression.

Example:
CALL 15%25

EXPLAIN

EXPLAIN [PLAN FOR] {select | insert | update | delete}

Shows the execution plan for a query.

Example:
EXPLAIN SELECT * FROM TEST WHERE ID=1

MERGE

MERGE INTO tableName [(columnName [,...])] [KEY(columnName [,...])]

{VALUES {([{DEFAULT | expression} [,...1]1)} [,---]
| select}

72 of 144

Updates the row if it exists, and if the row does not exist, inserts a new row.

If the key columns are not specified, the primary key columns are used to find the row.
This command is sometimes called 'UPSERT' as it updates a row if it exists,

or inserts the row if it does not yet exist.

If more than one row per new row is affected, an exception is thrown.

Example:
MERGE INTO TEST KEY(ID) VALUES(2, 'World")

RUNSCRIPT

RUNSCRIPT FROM fileNameString
[COMPRESSION {DEFLATE|LZF|ZIP|GZIP}]
[CIPHER cipher PASSWORD string]
[CHARSET charsetString]

Runs a SQL script from a file. The script is a text file containing SQL statements; each statement must end with ';'.
This command can be used to restore a database from a backup.

The password must be in single quotes. It is case sensitive and can contain spaces.

The compression algorithm must match to the one used when creating the script.

When using encryption, only DEFLATE and LZF are supported.

Instead of a file, an URL may be used.

Admin rights are required to execute this command.

Example:
RUNSCRIPT FROM 'backup'

SCRIPT

SCRIPT [SIMPLE] [NODATA] [NOPASSWORDS] [NOSETTINGS] [DROP] [BLOCKSIZE blockSizeInt]
[TO fileNameString

[COMPRESSION {DEFLATE|LZF|ZIP|GZIP}]

[CIPHER cipher PASSWORD string]]

Creates a SQL script with or without the insert statements.

The simple format does not use multi-row insert statements.

If no file name is specified, the script is returned as a result set.

This command can be used to create a backup of the database.

For long term storage, it is more portable than file based backup.

If the DROP option is specified, drop statements are created for tables, views, and sequences.
If the block size is set, CLOB and BLOB values larger than this size are split into separate blocks.
If a file name is specified, then the whole script (including insert statements) is written to this file,
and a result set without the insert statements is returned.

When using encryption, only DEFLATE and LZF are supported.

This command locks objects while it is running.

The password must be in single quotes. It is case sensitive and can contain spaces.

Example:
SCRIPT NODATA

ALTER INDEX RENAME

ALTER INDEX indexName RENAME TO newIndexName

Renames an index.

Example:
ALTER INDEX IDXNAME RENAME TO IDX_TEST_NAME

73 of 144

ALTER SEQUENCE

ALTER SEQUENCE sequenceName
[RESTART WITH long]
[INCREMENT BY long]

Changes the next value and / or the increment of a sequence.
This command can be used inside a transaction,

that means it does not commit the current transaction;
however the new value is by other transactions immediately,
and rolling back this command has no effect.

Example:
ALTER SEQUENCE SEQ_ID RESTART WITH 1000

ALTER TABLE ADD

ALTER TABLE tableName ADD name dataType
[DEFAULT expression]

[[NOT] NULL] [AUTO_INCREMENT | IDENTITY]
[BEFORE columnName]

Adds a new column to a table.

Example:
ALTER TABLE TEST ADD CREATEDATE TIMESTAMP

ALTER TABLE ADD CONSTRAINT

ALTER TABLE tableName ADD constraint [CHECK|NOCHECK]

Adds a constraint to a table.
If NOCHECK is specified, the existing data is not checked for consistency (the default is to check consistency for existing data).
It is not possible to disable checking for unique constraints.

Example:
ALTER TABLE TEST ADD CONSTRAINT NAME_UNIQUE UNIQUE(NAME)

ALTER TABLE ALTER COLUMN

ALTER TABLE tableName ALTER COLUMN columnName
dataType [DEFAULT expression] [NOT [NULL]]
[AUTO_INCREMENT | IDENTITY]

Changes the data type of a column.
The data will be migrated if possible, and if not, the operation fails.

Example:
ALTER TABLE TEST ALTER COLUMN NAME CLOB

ALTER TABLE ALTER COLUMN RENAME

ALTER TABLE tableName ALTER COLUMN columnName
RENAME TO name

Renames a column.

74 of 144

Example:
ALTER TABLE TEST ALTER COLUMN NAME RENAME TO TEXT

ALTER TABLE ALTER COLUMN RESTART

ALTER TABLE tableName ALTER COLUMN columnName
RESTART WITH long

Changes the next value of an auto increment column.
The column must be an auto increment column.
The same transactional rules as for ALTER SEQUENCE apply.

Example:
ALTER TABLE TEST ALTER COLUMN ID RESTART WITH 10000

ALTER TABLE ALTER COLUMN SELECTIVITY

ALTER TABLE tableName ALTER COLUMN columnName
SELECTIVITY int

Sets the selectivity (1-100) for a column. Setting the selectivity to 0 means setting it to the default value.
Selectivity is used by the cost based optimizer to calculate the estimated cost of an index.
Selectivity 100 means values are unique, 10 means every distinct value appears 10 times on average.

Example:
ALTER TABLE TEST ALTER COLUMN NAME SELECTIVITY 100

ALTER TABLE ALTER COLUMN SET DEFAULT

ALTER TABLE tableName ALTER COLUMN columnName
SET DEFAULT expression

Changes the default value of a column.

Example:
ALTER TABLE TEST ALTER COLUMN NAME SET DEFAULT "

ALTER TABLE ALTER COLUMN SET NOT NULL

ALTER TABLE tableName ALTER COLUMN columnName
SET NOT NULL

Sets a column to not allow NULL.
This is not possible if there are any rows with NULL in this column.

Example:
ALTER TABLE TEST ALTER COLUMN NAME SET NOT NULL

ALTER TABLE ALTER COLUMN SET NULL

ALTER TABLE tableName ALTER COLUMN columnName
SET NULL

Sets a column to allow NULL.

This is not possible if the column is part of a primary key or multi-column hash index.

If there are single column indexes on this column, they are dropped.

75 of 144

Example:
ALTER TABLE TEST ALTER COLUMN NAME SET NULL

ALTER TABLE DROP COLUMN

ALTER TABLE tableName DROP COLUMN columnName

Removes a column from a table.

Example:
ALTER TABLE TEST DROP COLUMN NAME

ALTER TABLE DROP CONSTRAINT

ALTER TABLE tableName DROP
{CONSTRAINT [IF EXISTS] constraintName | PRIMARY KEY?}

Removes a constraint or a primary key from a table.

Example:
ALTER TABLE TEST DROP CONSTRAINT UNIQUE_NAME

ALTER TABLE SET

ALTER TABLE tableName SET REFERENTIAL_INTEGRITY {FALSE | TRUE [CHECK|NOCHECK]}

Disables or enables referential integrity checking for a table.

This command can be used inside a transaction.

Enabling it does not check existing data, except if CHECK is specified.

Use SET REFERENTIAL_INTEGRITY to disable it for all tables (the global flag and the flag for each table are independent).

Example:
ALTER TABLE TEST SET REFERENTIAL_INTEGRITY FALSE

ALTER TABLE RENAME

ALTER TABLE tableName RENAME TO newName

Renames a table.

Example:
ALTER TABLE TEST RENAME TO MY_DATA

ALTER USER ADMIN

ALTER USER userName ADMIN {TRUE | FALSE}

Switches the admin flag of a user on or off.
For compatibility, only unquoted or uppercase user names are allowed.
Admin rights are required to execute this command.

Example:
ALTER USER TOM ADMIN TRUE

76 of 144

ALTER USER RENAME

ALTER USER userName RENAME TO newUserName

Renames a user.

For compatibility, only unquoted or uppercase user names are allowed.

After renaming a user the password becomes invalid and needs to be changed as well.
Admin rights are required to execute this command.

Example:
ALTER USER TOM RENAME TO THOMAS

ALTER USER SET PASSWORD

ALTER USER userName SET
{PASSWORD string | SALT bytes HASH bytes}

Changes the password of a user.

For compatibility, only unquoted or uppercase user names are allowed.

The password must be in single quotes. It is case sensitive and can contain spaces.
The salt and hash values are hex strings.

Admin rights are required to execute this command.

Example:
ALTER USER SA SET PASSWORD 'rioyxIgt'

ALTER VIEW

ALTER VIEW viewName RECOMPILE

Recompiles a view after the underlying tables have been changed or created.

Example:
ALTER VIEW ADDRESS_VIEW RECOMPILE

ANALYZE

ANALYZE [SAMPLE_SIZE rowCountInt]

Updates the selectivity statistics of all tables.

The selectivity is used by the cost based optimizer to select the best index for a given query.
If no sample size is set, up to 10000 rows per table are read to calculate the values.

The value 0 means all rows.

The selectivity can be set manually with ALTER TABLE ALTER COLUMN SELECTIVITY.

The manual values are overwritten by this statement.

The selectivity is available in the INFORMATION_SCHEMA.COLUMNS table.

Example:
ANALYZE SAMPLE_SIZE 1000

COMMENT

COMMENT ON { { TABLE | VIEW | CONSTANT | CONSTRAINT

| ALIAS | INDEX | ROLE | SCHEMA | SEQUENCE | TRIGGER | USER | DOMAIN }
[schemaName.]objectName } | { COLUMN [schemaName.]tableName.columnName }
IS expression

77 of 144

Sets the comment of a database object. Use NULL to remove the comment.
Admin rights are required to execute this command.

Example:
COMMENT ON TABLE TEST IS 'Table used for testing'

CREATE AGGREGATE

CREATE AGGREGATE [IF NOT EXISTS] newAggregateName FOR className

Creates a new user-defined aggregate function. The method name must be the full qualified class name.
The class must implement the interface org.h2.api.AggregateFunction.
Admin rights are required to execute this command.

Example:
CREATE AGGREGATE MEDIAN FOR "com.acme.db.Median"

CREATE ALIAS

CREATE ALIAS [IF NOT EXISTS] newFunctionAliasName FOR classAndMethodName

Creates a new function alias. The method name must be the full qualified class and method name,

and may optionally include the parameter classes as in "java.lang.Integer.parselnt(java.lang.String, int)").
The class and the method must both be public, and the method must be static.

Admin rights are required to execute this command.

If the first parameter of the Java function is a java.sql.Connection, then

the current to the database is provided. This connection must not be closed.

If the class contains multiple methods with the given name but different parameter count,

all methods are mapped.

Example:

CREATE ALIAS MY_SQRT FOR "java.lang.Math.sqrt";

CREATE ALIAS GET_SYSTEM_PROPERTY FOR "java.lang.System.getProperty";
CALL GET_SYSTEM_PROPERTY('java.class.path');

CALL GET_SYSTEM_PROPERTY(‘com.acme.test', 'true');

CREATE CONSTANT

CREATE CONSTANT [IF NOT EXISTS] newConstantName VALUE expression

Creates a new constant.

Example:
CREATE CONSTANT ONE VALUE 1

CREATE DOMAIN

CREATE DOMAIN [IF NOT EXISTS] newDomainName AS dataType
[DEFAULT expression] [[NOT] NULL] [SELECTIVITY selectivity]
[CHECK condition]

Creates a new data type (domain).
The check condition must evaluate to true or to NULL (to prevent NULL, use NOT NULL).
In the condition, the term VALUE refers to the value being tested.

Example:
CREATE DOMAIN EMAIL AS VARCHAR(255) CHECK (POSITION('@', VALUE) > 1)

78 of 144

CREATE INDEX

CREATE {[UNIQUE [HASH]] INDEX [IF NOT EXISTS] newIndexName
| PRIMARY KEY [HASH]} ON tableName(columnName [,...])

Creates a new index.

Example:
CREATE INDEX IDXNAME ON TEST(NAME)

CREATE LINKED TABLE

CREATE [[GLOBAL | LOCAL] TEMPORARY] LINKED TABLE [IF NOT EXISTS]
name(driverString, urlString,

userString, passwordString, [originalSchemaString,] originalTableString)
[EMIT UPDATES | READONLY]

Creates a table link to an external table.

The driver name may be empty if the driver is already loaded.

If the schema name is not set, only one table with that name may exist in the target database.
Usually, for update statements, the old rows are deleted first

and then the new rows inserted. It is possible to emit update

statements (however this is not possible on rollback), however

in this case multi-row unique key updates may not always work.

Linked tables to the same database share one connection.

If a query is used instead of the original table name, the table is read only.
To use INDI to get the connection, the driver class must be a
javax.naming.Context (for example javax.naming.InitialContext), and the
URL must be the resource name (for example java:comp/env/jdbc/Test).
The current user owner must have admin rights.

Example:
CREATE LINKED TABLE LINK('org.h2.Driver', 'jdbc:h2:test2', 'sa’, 'sa', 'TEST');
CREATE LINKED TABLE LINK(", 'jdbc:h2:test2', 'sa’, 'sa’, '(SELECT * FROM TEST WHERE ID>0)");
CREATE LINKED TABLE LINK(‘javax.naming.InitialContext',
‘java:comp/env/jdbc/Test', NULL, NULL, '(SELECT * FROM TEST WHERE ID>0)");

CREATE ROLE

CREATE ROLE [IF NOT EXISTS] newRoleName

Creates a new role.

Example:
CREATE ROLE READONLY

CREATE SCHEMA

CREATE SCHEMA [IF NOT EXISTS] name
[AUTHORIZATION ownerUserName]

Creates a new schema.
The current user owner must have admin rights.
If no authorization is specified, the current user is used.

Example:
CREATE SCHEMA TEST_SCHEMA AUTHORIZATION SA

79 of 144

CREATE SEQUENCE

CREATE SEQUENCE [IF NOT EXISTS] newSequenceName
[START WITH long]

[INCREMENT BY long]

[CACHE long]

Creates a new sequence. The data type of a sequence is BIGINT.
The cache is the number of pre-allocated numbers. If the system crashes without closing the
database, at most this many numbers are lost. The default cache size is 32.

Example:
CREATE SEQUENCE SEQ_ID

CREATE TABLE

CREATE [CACHED | MEMORY | TEMP | [GLOBAL | LOCAL] TEMPORARY]
TABLE [IF NOT EXISTS] name

{ ({name dataType

[{AS computedColumnExpression | DEFAULT expression}]

[[NOT] NULL]

[{AUTO_INCREMENT | IDENTITY}[(startInt [, incrementInt])]]
[SELECTIVITY selectivity]

[PRIMARY KEY [HASH] | UNIQUE]

| constraint} [,...]) [AS select] } | { AS select }

Creates a new table.

Cached tables (the default) are persistent, and the number or rows is not limited by the main memory.

Memory tables are persistent, but the index data is kept in the main memory, so memory tables should not get too large.
Temporary tables are not persistent. Temporary tables can be global (accessible by all connections)

or local (only accessible by the current connection). The default is for temporary tables is global.

Example:
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255))

CREATE TRIGGER

CREATE TRIGGER [IF NOT EXISTS] newTriggerName
{BEFORE | AFTER} {INSERT | UPDATE | DELETE} [,...]
ON tableName

[FOR EACH ROW] [QUEUE int] [NOWAIT]

CALL triggeredClassName

Creates a new trigger. The trigger class must be public. Nested and inner classes are not supported.
Before triggers are called after data conversion is made, default values are set,

null and length constraint checks have been made; but before other constraints

have been checked.

Example:
CREATE TRIGGER TRIG_INS BEFORE INSERT ON TEST FOR EACH ROW CALL "MyTrigger"

CREATE USER

CREATE USER [IF NOT EXISTS] newUserName
{PASSWORD string | SALT bytes HASH bytes}
[ADMIN]

Creates a new user.
Admin rights are required to execute this command.
For compatibility, only unquoted or uppercase user names are allowed.

80 of 144

The password must be in single quotes. It is case sensitive and can contain spaces.

The salt and hash values are hex strings.

Example:
CREATE USER GUEST PASSWORD 'abc’

CREATE VIEW

CREATE [FORCE] VIEW [IF NOT EXISTS] newViewName [(columnName [,..])]
AS select

Creates a new view. If the force option is used, then the view is created even if the underlying table(s) don't exist.

Admin rights are required to execute this command.

Example:
CREATE VIEW TEST_VIEW AS SELECT * FROM TEST WHERE ID < 100

DROP AGGREGATE

DROP AGGREGATE [IF EXISTS] aggregateName

Drops an existing user-defined aggregate function.
Admin rights are required to execute this command.

Example:
CREATE AGGREGATE MEDIAN

DROP ALIAS

DROP ALIAS [IF EXISTS] functionAliasName

Drops an existing function alias.
Admin rights are required to execute this command.

Example:
CREATE ALIAS MY_SQRT

DROP ALL OBJECTS

DROP ALL OBJECTS [DELETE FILES]

Drops all existing views, tables, sequences, schemas, function aliases, roles,

user-defined aggregate functions, domains, and users (except the current user).

If DELETE FILES is specified, the database files will be
removed when the last user disconnects from the database.
Warning: This command can not be rolled back.

Admin rights are required to execute this command.

Example:
DROP ALL OBJECTS

DROP CONSTANT

DROP CONSTANT [IF EXISTS] constantName

Drops a constant.

81 of 144

Example:
DROP CONSTANT ONE

DROP DOMAIN

DROP DOMAIN [IF EXISTS] domainName

Drops a data type (domain).

Example:
DROP DOMAIN EMAIL

DROP INDEX

DROP INDEX [IF EXISTS] indexName

Drops an index.

Example:
DROP INDEX IF EXISTS IDXNAME

DROP ROLE

DROP ROLE [IF EXISTS] roleName

Drops a role.

Example:
DROP ROLE READONLY

DROP SCHEMA

DROP SCHEMA [IF EXISTS] schemaName

Drops a schema.

Example:
DROP SCHEMA TEST_SCHEMA

DROP SEQUENCE

DROP SEQUENCE [IF EXISTS] sequenceName

Drops a sequence.

Example:
DROP SEQUENCE SEQ_ID

DROP TABLE

DROP TABLE [IF EXISTS] tableName [,...]

Drops an existing table, or a list of existing tables.

82 of 144

Example:
DROP TABLE TEST

DROP TRIGGER

DROP TRIGGER [IF EXISTS] triggerName

Drops an existing trigger.

Example:
DROP TRIGGER TRIG_INS

DROP USER

DROP USER [IF EXISTS] userName

Drops a user.

Admin rights are required to execute this command.

The current user cannot be dropped.

For compatibility, only unquoted or uppercase user names are allowed.

Example:
DROP USER TOM

DROP VIEW

DROP VIEW [IF EXISTS] viewName

Drops a view.

Example:
DROP VIEW TEST_VIEW

TRUNCATE TABLE

TRUNCATE TABLE tableName

Removes all rows from a table.

Other than DELETE FROM without where clause, this command can not be rolled back.
This command is faster than DELETE without where clause.

Only regular data tables without foreign key constraints can be truncated.

This command commits an open transaction.

Example:
TRUNCATE TABLE TEST

COMMIT

COMMIT [WORK]

Commits a transaction.

Example:
COMMIT

83 of 144

COMMIT TRANSACTION

COMMIT TRANSACTION transactionName

Sets the resolution of an in-doubt transaction to 'commit'.
Admin rights are required to execute this command.
This command is part of the 2-phase-commit protocol.

Example:
COMMIT TRANSACTION XID_TEST

CHECKPOINT

CHECKPOINT

Flushes the log and data files and switches to a new log file.
Admin rights are required to execute this command.

Example:
CHECKPOINT

CHECKPOINT SYNC

CHECKPOINT SYNC

Flushes the log, data and index files and forces all system buffers be written to the underlying device.

Admin rights are required to execute this command.

Example:
CHECKPOINT SYNC

GRANT RIGHT

GRANT {SELECT | INSERT | UPDATE | DELETE | ALL} [,...]
ON tableName [,...] TO {PUBLIC | userName | roleName}

Grants rights for a table to a user or role.
Admin rights are required to execute this command.

Example:
GRANT SELECT ON TEST TO READONLY

GRANT ROLE

GRANT roleName TO {PUBLIC | userName | roleName}

Grants a role to a user or role.
Admin rights are required to execute this command.

Example:
GRANT READONLY TO PUBLIC

HELP

HELP [anything [...]]

84 of 144

Displays the help pages of SQL commands or keywords

Example:
HELP SELECT

PREPARE COMMIT

PREPARE COMMIT newTransactionName

Prepares committing a transaction.
This command is part of the 2-phase-commit protocol.

Example:
PREPARE COMMIT XID_TEST

REVOKE RIGHT

REVOKE {SELECT | INSERT | UPDATE | DELETE | ALL} [,...]
ON tableName [,...] FROM {PUBLIC | userName | roleName}

Removes rights for a table from a user or role.
Admin rights are required to execute this command.

Example:
REVOKE SELECT ON TEST FROM READONLY

REVOKE ROLE

REVOKE roleName
FROM {PUBLIC | userName | roleName}

Removes a role from a user or role.
Admin rights are required to execute this command.

Example:
REVOKE READONLY FROM TOM

ROLLBACK

ROLLBACK [TO SAVEPOINT savepointName]

Rolls back a transaction.

If a savepoint name is used, the transaction is only rolled back to the specified savepoint.

Example:
ROLLBACK

ROLLBACK TRANSACTION

ROLLBACK TRANSACTION transactionName

Sets the resolution of an in-doubt transaction to 'rollback'.
Admin rights are required to execute this command.
This command is part of the 2-phase-commit protocol.

85 of 144

Example:
ROLLBACK TRANSACTION XID_TEST

SAVEPOINT

SAVEPOINT savepointName

Create a new savepoint. See also ROLLBACK.
Savepoints are only valid until the transaction is committed or rolled back.

Example:
SAVEPOINT HALF_DONE

SET@
SET @variableName [=] expression

Updates a user-defined variable.
This command does not commit a transaction, and rollback does not affect it.

Example:
SET @TOTAL=0

SET ALLOW_LITERALS

SET ALLOW_LITERALS {NONE|ALL|NUMBERS}

This setting can help solve the SQL injection problem.

By default, text and number literals are allowed in SQL statements.

However, this enables SQL injection if the application dynamically builds SQL statements.
SQL injection is not possible if user data is set using parameters ('?').

There are three options for this setting:

NONE: Literals of any kind are not allowed, only parameters and constants are allowed.
NUMBERS: Only numerical and boolean literals are allowed.

ALL: All literals are allowed (default).

This setting is persistent.

Admin rights are required to execute this command.

See also CREATE CONSTANT.

This setting can be appended to the database URL: jdbc:h2:test;ALLOW_LITERALS=NONE

Example:
SET ALLOW_LITERALS NONE

SET AUTOCOMMIT

SET AUTOCOMMIT {TRUE | ON | FALSE | OFF}

Switches auto commit on or off.
This setting can be appended to the database URL: jdbc:h2:test; AUTOCOMMIT=0FF

Example:
SET AUTOCOMMIT OFF

SET CACHE_SIZE

SET CACHE_SIZE int

86 of 144

Sets the size of the cache in KB (each KB being 1024 bytes). The default value is 16384 (16 MB).

The value is rounded to the next higher power of two.

Depending on the virtual machine, the actual memory required may be higher.

This setting is persistent and affects all connections as there is only one cache per database.
Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test;CACHE_SIZE=8192

Example:
SET CACHE_SIZE 8192

SET CLUSTER

SET CLUSTER serverListString

This command should not be used directly by an application,

the statement is executed automatically by the system.

The behavior may change in future releases.

Sets the cluster server list. An empty string switches off the cluster mode.

Switching on the cluster mode requires admin rights,

but any user can switch it off

(this is automatically done when the client detects the other server is not responding).
Admin rights are required to execute this command.

Example:
SET CLUSTER "

SET COLLATION

SET [DATABASE] COLLATION
{OFF | collationName
[STRENGTH {PRIMARY | SECONDARY | TERTIARY | IDENTICAL}1}

Sets the collation used for comparing strings.

This command can only be executed if there are no tables defined.
See java.text.Collator for details about STRENGTH.

This setting is persistent.

Admin rights are required to execute this command.

Example:
SET COLLATION ENGLISH

SET COMPRESS_LOB

SET COMPRESS_LOB {NO|LZF|DEFLATE}

Sets the compression algorithm for BLOB and CLOB data.
Compression is usually slower, but needs less memory.
This setting is persistent.

Admin rights are required to execute this command.

Example:
SET COMPRESS_LOB LZF

SET DATABASE_EVENT_LISTENER

SET DATABASE_EVENT_LISTENER classNameString

Sets the event listener class.
An empty string (") means no listener should be used.

87 of 144

This setting is not persistent.

Admin rights are required to execute this command,

except if it is set when opening the database

(in this case it is reset just after opening the database).

This setting can be appended to the database URL: jdbc:h2:test;DATABASE_EVENT_LISTENER='sample.MyListener'

Example:
SET DATABASE_EVENT_LISTENER 'sample.MyListener'

SET DB_CLOSE_DELAY

SET DB_CLOSE_DELAY int

Sets the delay for closing a database if all connections are closed.

-1: the database is never closed until the close delay is set to some other value or SHUTDOWN is called.

0: no delay (default; the database is closed if the last connection to it is closed).

1: the database is left open for 1 second after the last connection is closed.

Other values: the number of seconds the database is left open after closing the last connection.

If the application exits normally or System.exit is called, the database is closed immediately, even if a delay is set.
This setting is persistent.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test;DB_CLOSE_DELAY=-1

Example:
SET DB_CLOSE_DELAY -1

SET DEFAULT_LOCK_TIMEOUT

SET DEFAULT LOCK_TIMEOUT int

Sets the default lock timeout (in milliseconds) in this database that is used for the new sessions.
This setting is persistent.

The default value for this setting is 1000 (one second).

Admin rights are required to execute this command.

Example:
SET DEFAULT_LOCK_TIMEOUT 5000

SET DEFAULT_TABLE_TYPE

SET DEFAULT_TABLE_TYPE {MEMORY | CACHED}

Sets the default table storage type that is used when creating new tables.
Memory tables are kept fully in the main memory (including indexes),
however changes to the data are stored in the log file.

The size of memory tables is limited by the memory.

The default is CACHED.

This setting is persistent.

Admin rights are required to execute this command.

Example:
SET DEFAULT_TABLE_TYPE MEMORY

SET EXCLUSIVE

SET EXCLUSIVE {TRUE | FALSE}

Switched the database to exclusive mode and back. In exclusive mode, new connections are rejected,
and operations by other connections are paused until the exclusive mode is disabled.

88 of 144

Only the connection that set the exclusive mode can disable it. When the connection is closed,
it is automatically disabled.

This setting is not persistent.

Admin rights are required to execute this command.

Example:
SET EXCLUSIVE TRUE

SET IGNORECASE

SET IGNORECASE {TRUE|FALSE}

If IGNORECASE is enabled, text columns in newly created tables will be

case-insensitive. Already existing tables are not affected.

This setting is persistent.

The effect of case-insensitive columns is similar to using a collation with strength PRIMARY.
Case-insensitive columns are compared faster than when using a collation.

Admin rights are required to execute this command.

Example:
SET IGNORECASE TRUE

SET LOCK_MODE
SET LOCK_MODE int

Sets the lock mode.

0: No locking (should only be used for testing). Also known as READ_UNCOMMITTED.

1: Table level locking. Also known as SERIALIZABLE.

2: Table level locking with garbage collection (if the application does not close all connections).

3: Table level locking, but read locks are released immediately (default). Also known as READ_COMMITTED.
This setting is not persistent.

Please note that using SET LOCK_MODE 0 while at the same time using multiple

connections may result in inconsistent transactions.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test;LOCK_MODE=3

Example:
SET LOCK_MODE 1

SET LOCK_TIMEOUT

SET LOCK_TIMEOUT int

Sets the lock timeout (in milliseconds) for the current session.

The default value for this setting is 1000 (one second).

This command does not commit a transaction, and rollback does not affect it.

This setting can be appended to the database URL: jdbc:h2:test;LOCK_TIMEOUT=10000

Example:
SET LOCK_TIMEOUT 1000

SET LOG

SET LOG int

Enabled or disables writing to the log file.
0: logging is disabled (faster)
1: logging of the data is enabled, but logging of the index changes is disabled (default)

89 of 144

2: logging of both data and index changes are enabled

Logging can be disabled to improve the performance when durability is not important,
for example while running tests or when loading the database.

Warning: It may not be possible to recover the database if logging is disabled and
the application terminates abnormally. If logging of index changes is enabled,

opening a database that was crashed becomes faster because the indexes don't need to be rebuilt.

Admin rights are required to execute this command.
This setting can be appended to the database URL: jdbc:h2:test;LOG=2

Example:
SET LOG 0

SET MAX_LENGTH_INPLACE_LOB
SET MAX_LENGTH_INPLACE_LOB int

Sets the maximum size of an in-place LOB object. LOB objects larger
that this size are stored in a separate file, otherwise stored

directly in the database (in-place).

The default max size is 1024.

This setting is persistent.

Admin rights are required to execute this command.

Example:
SET MAX_LENGTH_INPLACE_LOB 128

SET MAX_LOG_SIZE
SET MAX_LOG_SIZE int

Sets the maximum file size of a log file, in megabytes.

If the file exceeds the limit, a new file is created.

Old files (that are not used for recovery) are deleted automatically,
but multiple log files may exist for some time.

The default max size is 32 MB.

This setting is persistent.

Admin rights are required to execute this command.

Example:
SET MAX_LOG_SIZE 2

SET MAX_MEMORY_ROWS
SET MAX_MEMORY_ROWS int

The maximum number of rows in a result set that are kept in-memory.
If more rows are read, then the rows are buffered to disk.

The default value is 10000.

This setting is persistent.

Admin rights are required to execute this command.

Example:
SET MAX_MEMORY_ROWS 1000

SET MAX_MEMORY_UNDO

SET MAX_MEMORY_UNDO int

90 of 144

The maximum number of undo records per a session that are kept in-memory.

If a transaction is larger, the records are buffered to disk. The default value is 50000.
Changes to tables without a primary key can not be buffered to disk.

This setting is persistent.

Admin rights are required to execute this command.

Example:
SET MAX_MEMORY_UNDO 1000

SET MAX_OPERATION_MEMORY
SET MAX_OPERATION_MEMORY int

Sets the maximum memory used for large operations (delete and insert), in bytes.

Operations that use more memory are buffered to disk, slowing down the operation.

The default max size is 100000. 0 means no limit.

This setting is not persistent.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test;MAX_OPERATION_MEMORY=10000

Example:
SET MAX_OPERATION_MEMORY 0

SET MODE
SET MODE {REGULAR | HSQLDB | POSTGRESQL | MYSQL}

Changes to another database mode.

This setting is not persistent.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test; MODE=MYSQL

Example:
SET MODE HSQLDB

SET MULTI_THREADED
SET MULTL_THREADED {0|1}

Enabled (1) or disabled (0) multi-threading inside the database engine.

By default, this setting is disabled. Currently, enabling this is experimental only.

Admin rights are required to execute this command.

This is a global setting, which means it is not possible to open multiple databases

with different modes at the same time in the same virtual machine.

This setting is not persistent, however the value is kept until the virtual machine exits or it is changed.
This setting can be appended to the database URL: jdbc:h2:test;MULTI_THREADED=1

Example:
SET MULTI_THREADED 1

SET OPTIMIZE_REUSE_RESULTS
SET OPTIMIZE_REUSE_RESULTS {0|1}

Enabled (1) or disabled (0) the result reuse optimization.

If enabled, subqueries and views used as subqueries are only re-run if the data in one of the tables was changed.
This option is enabled by default.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test;OPTIMIZE_REUSE_RESULTS=0

91 of 144

Example:
SET OPTIMIZE_REUSE_RESULTS 0

SET QUERY_TIMEOUT

SET QUERY_TIMEOUT int

Set the query timeout of the current session to the given value.

The timeout is in milliseconds. All kinds of statements will

throw an exception if they take longer than the given value.

The default timeout is 0, meaning no timeout.

This command does not commit a transaction, and rollback does not affect it.

Example:
SET QUERY_TIMEOUT 10000

SET PASSWORD

SET PASSWORD string

Changes the password of the current user.

The password must be in single quotes. It is case sensitive and can contain spaces.

Example:
SET PASSWORD 'abcstzri!.5'

SET REFERENTIAL_INTEGRITY

SET REFERENTIAL_INTEGRITY [TRUE|FALSE]

Disabled or enables referential integrity checking for the whole database.
Enabling it does not check existing data.

Use ALTER TABLE SET to disable it only for one table.

This setting is not persistent.

Admin rights are required to execute this command.

Example:
SET REFERENTIAL_INTEGRITY FALSE

SET SALT HASH

SET SALT bytes HASH bytes

Sets the password salt and hash for the current user.

The password must be in single quotes. It is case sensitive and can contain spaces.

Example:
SET SALT '00' HASH '1122'

SET SCHEMA

SET SCHEMA schemaName

Changes the default schema of the current connection.
The default schema is used in statements where no schema is set explicitly.
The default schema for new connections is PUBLIC.

92 of 144

This command does not commit a transaction, and rollback does not affect it.
This setting can be appended to the database URL: jdbc:h2:test;SCHEMA=ABC

Example:
SET SCHEMA INFORMATION_SCHEMA

SET SCHEMA_SEARCH_PATH

SET SCHEMA_SEARCH_PATH schemaName [,...]

Changes the schema search path of the current connection.

The default schema is used in statements where no schema is set explicitly.

The default schema for new connections is PUBLIC.

This command does not commit a transaction, and rollback does not affect it.

This setting can be appended to the database URL: jdbc:h2:test;SCHEMA_SEARCH_PATH=ABC,DEF

Example:
SET SCHEMA_SEARCH_PATH INFORMATION_SCHEMA, PUBLIC

SET THROTTLE

SET THROTTLE int

Sets the throttle for the current connection.

The value is the number of milliseconds delay after each 50 ms.

The default value is 0 (throttling disabled).

This command does not commit a transaction, and rollback does not affect it.
This setting can be appended to the database URL: jdbc:h2:test; THROTTLE=50

Example:
SET THROTTLE 200

SET TRACE_LEVEL

SET {TRACE_LEVEL_FILE | TRACE_LEVEL_SYSTEM_OUT} int

Sets the trace level for file the file or system out stream.

Levels are: 0=off, 1=error, 2=info, 3=debug.

This setting is not persistent.

Admin rights are required to execute this command.

This command does not commit a transaction, and rollback does not affect it.

This setting can be appended to the database URL: jdbc:h2:test; TRACE_LEVEL_SYSTEM_OUT=3
To use SLF4], append ;TRACE_LEVEL_FILE=4 to the database URL when opening the database.

Example:
SET TRACE_LEVEL_SYSTEM_OUT 3

SET TRACE_MAX_FILE_SIZE

SET TRACE_MAX_FILE_SIZE int

Sets the maximum trace file size.

If the file exceeds the limit, the file is renamed to .old and a new file is created.

If another .old file exists, it is deleted.

The default max size is 16 MB.

This setting is persistent.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test; TRACE_MAX_FILE_SIZE=3

93 of 144

Example:
SET TRACE_MAX_FILE_SIZE 10

SET UNDO_LOG

SET UNDO_LOG int

Enables (1) or disables (0) the per session undo log.
The undo log is enabled by default.

When disabled, transactions can not be rolled back.
This setting should only be used for bulk operations
that don't need to be atomic.

Example:
SET UNDO_LOG 0

SET WRITE_DELAY
SET WRITE_DELAY int

Set the maximum delay between a commit and flushing the log, in milliseconds.
This setting is persistent.

Admin rights are required to execute this command.

This setting can be appended to the database URL: jdbc:h2:test; WRITE_DELAY=0

Example:
SET WRITE_DELAY 2000

SHUTDOWN

SHUTDOWN [IMMEDIATELY|COMPACT|SCRIPT]

This statement is closes all open connections to the database and closes the database.

If no option is used, then all connections are closed.

If the IMMEDIATELY option is used, the database files are closed as if the hard drive stops working,
without rollback of the open transactions.

COMPACT and SCRIPT are only supported for compatibility and have no effect.

Any open transaction are rolled back before closing the connection.

This command should usually not be used, as the database is closed

automatically when the last connection to it is closed.

Admin rights are required to execute this command.

Example:
SHUTDOWN

Comments

-- anythingUntilEndOfLine
| // anythingUntilEndOfLine
| /* anythingUntilIEndComment */

Comments can be used anywhere in a command and are ignored by the database.
Line comments end with a newline.
Block comments cannot be nested, but can be multiple lines long.

Example:
// This is a comment

94 of 144

Select Part

[TOP term] [DISTINCT | ALL] selectExpression [,...]

The SELECT part of a query.

Example:
DISTINCT *

From Part

tableExpression [,...]

The FROM part of a query.

Example:
FROM TEST

Constraint

PRIMARY KEY [HASH] (columnName [,...])

| [CONSTRAINT [IF NOT EXISTS] newConstraintName] {
CHECK expression

| UNIQUE (columnName [,...])

| referentialConstraint}

Defines a constraint.
The check condition must evaluate to true or to NULL (to prevent NULL, use NOT NULL).

Example:
PRIMARY KEY(ID, NAME)

Referential Constraint

FOREIGN KEY (columnName [,...])

REFERENCES [refTableName] [(refColumnNamel,...])]

[ON DELETE {CASCADE | RESTRICT | NO ACTION | SET DEFAULT | SET NULL}]
[ON UPDATE {CASCADE | SET DEFAULT | SET NULL}]

Defines a referential constraint.

If the table name is not specified, then the same table is referenced.

As this database does not support deferred checking,

RESTRICT and NO ACTION will both throw an exception if the constraint is violated.
If the referenced columns are not specified, then the primary key columns are used.
The required indexes are automatically created if required.

Example:

FOREIGN KEY(ID) REFERENCES TEST(ID)

Table Expression

{[schemaName.] tableName | (select)} [[AS] newTableAlias]
[{{LEFT | RIGHT} [OUTER] | [INNER] | CROSS | NATURAL}
JOIN tableExpression [[AS] newTableAlias] [ON expression]]

Joins a table. The join expression is not supported for cross and natural joins.
A natural join is an inner join, where the condition is automatically on the columns with the same name.

95 of 144

Example:
TEST AS T LEFT JOIN TEST AS T1 ON T.ID = T1.ID

Order

{int | expression} [ASC | DESC]
[NULLS {FIRST | LAST}]

Sorts the result by the given column number, or by an expression.
If the expression is a single parameter, then the value is interpreted
as a column number. Negative column numbers reverse the sort order.

Example:
NAME DESC NULLS LAST

Expression
andCondition [OR andCondition]

Value or condition.
Example:

ID=1 OR NAME="H'

And Condition
condition [AND condition]

Value or condition.

Example:
ID=1 AND NAME="Hi"

Condition

operand [conditionRightHandSide]
| NOT condition
| EXISTS (select)

Boolean value or condition.

Example:
ID<>2

Condition Right Hand Side

compare { {{ALL|ANY|SOME}(select)} | operand }
| IS [NOT] NULL

| BETWEEN operand AND operand

| IN ({select | expression[,...1})

| [NOT] LIKE operand [ESCAPE string]

| [NOT] REGEXP operand

The right hand side of a condition.

When comparing with LIKE, the wildcards characters are _ (any one character) and % (any characters).

96 of 144

The database uses an index when comparing with LIKE except if the operand starts with a wildcard.
When comparing with REGEXP, regular expression matching is used. See Java Matcher.find for details.

Example:
LIKE 'Jo%'

Compare

=|<|>|<>|<=]|>=|!=

Comparison operator. The operator != is the same as <>.

Example:
<>

Operand

summand [|| summand]

A value or a concatenation of values.

Example:
'Hi' || ' Eva'

Summand

factor [{+ | -} factor]

A value or a numeric sum.

Example:
ID + 20

Factor

term [{* | /} term]

A value or a numeric factor.

Example:
ID * 10

Term

value

| columnName

| ?[int]

| NEXT VALUE FOR sequenceName
| function

| {- | +} term

| (expression)

| select

| case

| caseWhen

| tableAlias.columnName

97 of 144

A value. Parameters can be indexed, for example ?1 meaning the first parameter.

Example:
'Hello'

Value

string | dollarQuotedString | hexNumber | int | long | decimal | double |
date | time | timestamp | boolean | bytes | array | null

A value of any data type, or null

Example:
10

Case

CASE expression {WHEN expression THEN expression}
[...] [ELSE expression] END

Returns the first expression where the value is equal to the test expression.
If no else part is specified, return NULL

Example:
CASE CNT WHEN 0 THEN 'No' WHEN 1 THEN 'One' ELSE 'Some' END

Case When

CASE {WHEN expression THEN expression}
[...] [ELSE expression] END

Returns the first expression where the condition is true.
If no else part is specified, return NULL

Example:
CASE WHEN CNT<10 THEN 'Low' ELSE 'High' END

Cipher

[AES | XTEA]

Two algorithms are supported, AES (AES-256) and XTEA (using 32 rounds).
The AES algorithm is about half as fast as XTEA.

Example:
AES

Select Expression

* | expression [[AS] columnAlias] | tableAlias.*

An expression in a SELECT statement.

Example:
ID AS VALUE

98 of 144

Data Type

intType | booleanType | tinyintType | smallintType | bigintType | identityType |
decimalType | doubleType | realType | dateType | timeType | timestampType |
binaryType | otherType | varcharType | varcharlgnorecaseType | charType
blobType | clobType | uuidType | arrayType

A data type definition.

Example:
INT

Name

{{AZ|_}[{AZ]_|0-9} [...] 1} | quotedName

Names are not case sensitive.
There is no maximum name length.

Example:
TEST

Alias

name

An alias is a name that is only valid in the context of the statement.

Example:
A

Quoted Name

"anythingExceptDoubleQuote"

Quoted names are case sensitive, and can contain spaces. There is no maximum name length.
Two double quotes can be used to create a single double quote inside an identifier.

Example:
"FirstName"

String
‘anythingExceptSingleQuote'

A string starts and ends with a single quote.
Two single quotes can be used to create a single quote inside a string.

Example:
'John"s car'

Dollar Quoted String

$$anythingExceptTwoDollarSigns$$

99 of 144

A string starts and ends with two dollar signs.

Two dollar signs are not allowed within the text.

A whitespace is required before the first set of dollar signs.
No escaping is required within the text.

Example:
$$John's car$$

Int

[- | +] digit [...]
The maximum integer number is 2147483647, the minimum is -2147483648.

Example:
10

Long

[- | +] digit [...]

Long numbers are between -9223372036854775808 and 9223372036854775807.

Example:
100000

Hex Number

[+ | -] Ox hex

A number written in hexadecimal notation.

Example:
Oxff

Decimal

[- | +]digit [...] [. digit [...]]
Number with fixed precision and scale.

Example:
-1600.05

Double

[- | +] digit [...]
[. digit [...] [E [- | +] exponentDigit [...] 1]

The limitations are the same as for the Java data type Double.

Example:
-1.4e-10

100 of 144

Date

DATE 'yyyy-MM-dd'

A date literal. The limitations are the same as for the Java data type java.sql.Date, but
for compatibility with other databases the suggested minimum and maximum years are 0001 and 9999.

Example:
DATE '2004-12-31"

Time

TIME 'hh:mm:ss'

A time literal.

Example:
TIME '23:59:59'

Timestamp

TIMESTAMP 'yyyy-MM-dd hh:mm:ss[.nnnnnnnnn]’'

A timestamp literal. The limitations are the same as for the Java data type java.sql.Timestamp, but
for compatibility with other databases the suggested minimum and maximum years are 0001 and 9999.

Example:
TIMESTAMP '2005-12-31 23:59:59'

Boolean

TRUE | FALSE

A boolean value.

Example:
TRUE

Bytes
X'hex'
A binary value. The hex value is not case sensitive.

Example:
X'01FF'

Array

(expression [,..])

An array of values.

101 of 144

Example:
(1,2)

Null

NULL

NULL is a value without data type and means 'unknown value'.

Example:
NULL

Hex

{{ digit | a-f | A-F } {digit | a-f | A-F }} [...]

The hexadecimal representation of a number or of bytes.
Two characters are one byte.

Example:
cafe

Digit

0-9

A digit.

Example:
0

Information Schema

The system tables in the schema 'INFORMATION_SCHEMA' contain the meta data of all tables in the database as well as the
current settings.

Table Columns
CATALOGS CATALOG_NAME
COLLATIONS NAME, KEY

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION,
COLUMN_DEFAULT, IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,

COLUMNS CHARACTER_OCTET_LENGTH, NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
CHARACTER_SET_NAME, COLLATION_NAME, TYPE_NAME, NULLABLE, IS_COMPUTED, SELECTIVITY,
CHECK_CONSTRAINT, REMARKS

COLUMN_PRIVIL GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, PRIVILEGE_TYPE,
EGES IS_GRANTABLE

CONSTANTS CONSTANT_CATALOG, CONSTANT_SCHEMA, CONSTANT_NAME, DATA_TYPE, REMARKS, SQL, ID

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME, CONSTRAINT_TYPE,
CONSTRAINTS TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, UNIQUE_INDEX_NAME, CHECK_EXPRESSION,
COLUMN_LIST, REMARKS, SQL, ID

PKTABLE_CATALOG, PKTABLE_SCHEMA, PKTABLE_NAME, PKCOLUMN_NAME, FKTABLE_CATALOG,
FKTABLE_SCHEMA, FKTABLE_NAME, FKCOLUMN_NAME, ORDINAL_POSITION, UPDATE_RULE,
DELETE_RULE, FK_NAME, PK_NAME, DEFERRABILITY

DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME, COLUMN_DEFAULT, IS_NULLABLE, DATA_TYPE,
PRECISION, SCALE, TYPE_NAME, SELECTIVITY, CHECK_CONSTRAINT, REMARKS, SQL, ID
FUNCTION_ALIA ALIAS_CATALOG, ALIAS_SCHEMA, ALIAS_NAME, JAVA_CLASS, JAVA_METHOD, DATA_TYPE,

SES COLUMN_COUNT, RETURNS_RESULT, REMARKS, ID

CROSS_REFERE
NCES

DOMAINS

102 of 144

ALIAS_CATALOG, ALTAS_SCHEMA, ALTIAS_NAME, JAVA_CLASS, JAVA_METHOD, COLUMN_COUNT, POS,

FUNCTION_COL 5| yMN_NAME, DATA_TYPE, TYPE_NAME, PRECISION, SCALE, RADIX, NULLABLE, COLUMN_TYPE,

UMNS REMARKS

HELP ID, SECTION, TOPIC, SYNTAX, TEXT, EXAMPLE
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, NON_UNIQUE, INDEX_NAME, ORDINAL_POSITION,

INDEXES COLUMN_NAME, CARDINALITY, PRIMARY_KEY, INDEX_TYPE_NAME, IS_GENERATED, INDEX_TYPE,
ASC_OR_DESC, PAGES, FILTER_CONDITION, REMARKS, SQL, ID, SORT_TYPE

IN_DOUBT TRANSACTION, STATE

LOCKS TABLE_SCHEMA, TABLE_NAME, SESSION_ID, LOCK_TYPE

RIGHTS GRANTEE, GRANTEETYPE, GRANTEDROLE, RIGHTS, TABLE_SCHEMA, TABLE_NAME, ID

ROLES NAME, REMARKS, ID

SCHEMATA CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER, DEFAULT _CHARACTER_SET_NAME,
DEFAULT_COLLATION_NAME, IS_ DEFAULT, REMARKS, ID

SEQUENCEs SEQUENCE_CATALOG, SEQUENCE_SCHEMA, SEQUENCE_NAME, CURRENT_VALUE, INCREMENT,
IS GENERATED, REMARKS, CACHE, ID

SESSIONS ID, USER_NAME, SESSION_START, STATEMENT, STATEMENT START

SESSION_STATE KEY, SQL

SETTINGS NAME, VALUE

TABLES TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE, STORAGE_TYPE, SQL, REMARKS, ID

EQBLE—PRIVILEG GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, PRIVILEGE_TYPE, IS_GRANTABLE

TABLE_TYPES TYPE

TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME, TRIGGER_TYPE, TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, BEFORE, JAVA_CLASS, QUEUE_SIZE, NO_WAIT, REMARKS, SQL, ID

TYPE_NAME, DATA_TYPE, PRECISION, PREFIX, SUFFIX, PARAMS, AUTO_INCREMENT, MINIMUM_SCALE,
MAXIMUM_SCALE, RADIX, POS, CASE_SENSITIVE, NULLABLE, SEARCHABLE

USERS NAME, ADMIN, REMARKS, ID

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, VIEW_DEFINITION, CHECK_OPTION, IS_UPDATABLE,
STATUS, REMARKS, ID

TRIGGERS

TYPE_INFO

VIEWS

Range Table

The range table is a dynamic system table that contains all values from a start to an end value. The table contains one column
called X. Both the start and end values are included in the result. The table is used as follows:

SELECT X FROM SYSTEM_RANGE(1, 10);

103 of 144

Aggregate Functions

AVG
BOOL_AND
BOOL_OR
COUNT
GROUP_CONCAT
MAX

MIN

SUM
SELECTIVITY
STDDEV_POP
STDDEV_SAMP
VAR_POP
VAR_SAMP

Numeric Functions

ABS

ACOS
ASIN
ATAN

cos

coT

SIN

TAN
ATAN2
BITAND
BITOR
BITXOR
MOD
CEILING
DEGREES
EXP
FLOOR
LOG
LOG10
RADIANS
SQRT

PI

POWER
RAND
RANDOM_UUID
ROUND
ROUNDMAGIC
SECURE_RAND
SIGN
ENCRYPT
DECRYPT
HASH
TRUNCATE
COMPRESS
EXPAND
ZERO

String Functions

ASCII
BIT_LENGTH
LENGTH
OCTET_LENGTH
104 of 144

CHAR

CONCAT
DIFFERENCE
HEXTORAW
RAWTOHEX
INSTR

INSERT Function
LOWER

UPPER

LEFT

RIGHT

LOCATE
POSITION

LPAD

RPAD

LTRIM

RTRIM

TRIM
REGEXP_REPLACE
REPEAT
REPLACE
SOUNDEX
SPACE
STRINGDECODE
STRINGENCODE
STRINGTOUTF8
SUBSTRING
UTF8TOSTRING
XMLATTR
XMLNODE
XMLCOMMENT
XMLCDATA
XMLSTARTDOC
XMLTEXT

Time and Date Functions

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
DATEADD
DATEDIFF
DAYNAME
DAY_OF_MONTH
DAY_OF_WEEK
DAY_OF_YEAR
EXTRACT
FORMATDATETIME
HOUR

MINUTE

MONTH
MONTHNAME
PARSEDATETIME
QUARTER

SECOND

WEEK

YEAR

System Functions

ARRAY_GET
ARRAY_LENGTH
AUTOCOMMIT
CANCEL_SESSION
CASEWHEN Function
CAST

105 of 144

COALESCE
CONVERT
CURRVAL
CSVREAD
CSVWRITE
DATABASE
DATABASE_PATH
FILE_READ
GREATEST
IDENTITY
IFNULL

LEAST
LOCK_MODE
LOCK_TIMEOUT
LINK_SCHEMA
MEMORY_FREE
MEMORY_USED
NEXTVAL
NULLIF
READONLY
ROWNUM
SCHEMA
SESSION_ID
SET

TABLE

USER

AVG

AVG([DISTINCT] {int | long | decimal | double}): value

The average (mean) value.

Aggregates are only allowed in select statements.

Example:
AVG(X)

BOOL_AND

BOOL_AND(boolean): boolean

Returns true if all expressions are true.

Aggregates are only allowed in select statements.

Example:
BOOL_AND(ID>10)

BOOL_OR

BOOL_OR(boolean): boolean

Returns true if any expression is true.

Aggregates are only allowed in select statements.

Example:
BOOL_OR(NAME LIKE 'W%")

106 of 144

COUNT

COUNT(*) | COUNT([DISTINCT] expression): int

The count of all row, or of the non-null values.
Aggregates are only allowed in select statements.

Example:
COUNT(*)

GROUP_CONCAT
GROUP_CONCAT([DISTINCT] string [ORDER BY {expression [ASC|DESC]}[,...]] [SEPARATOR expression]): string

Concatenates strings with a separator. The default separator is a ',' (without space).
Aggregates are only allowed in select statements.

Example:
GROUP_CONCAT(NAME ORDER BY ID SEPARATOR ', '

MAX

MAX(value): value

The highest value.
Aggregates are only allowed in select statements.

Example:
MAX(NAME)

MIN

MIN(value): value

The lowest value.
Aggregates are only allowed in select statements.

Example:
MIN(NAME)

SUM

SUM([DISTINCT] {int | long | decimal | double}): value

The sum of all values.
Aggregates are only allowed in select statements.

Example:
SUM(X)

SELECTIVITY

SELECTIVITY(value): int

107 of 144

Estimates the selectivity (0-100) of a value.

The value is defined as (100 * distinctCount / rowCount).
The selectivity of 0 rows is 0 (unknown).

Up to 10000 values are kept in memory.

Aggregates are only allowed in select statements.

Example:
SELECT SELECTIVITY(FIRSTNAME), SELECTIVITY(NAME) FROM TEST WHERE ROWNUM()<100000

STDDEV_POP

STDDEV_POP([DISTINCT] double): double

The population standard deviation.
Aggregates are only allowed in select statements.

Example:
STDDEV_POP(X)

STDDEV_SAMP

STDDEV_SAMP([DISTINCT] double): double

The sample standard deviation.
Aggregates are only allowed in select statements.

Example:
STDDEV(X)

VAR_POP

VAR_POP([DISTINCT] double): double

The population variance (square of the population standard deviation).
Aggregates are only allowed in select statements.

Example:
VAR_POP(X)

VAR_SAMP
VAR_SAMP([DISTINCT] double): double

The sample variance (square of the sample standard deviation).
Aggregates are only allowed in select statements.

Example:
VAR_SAMP(X)

ABS

ABS({int | long | decimal | double}): value

See also Java Math.abs.
Please note that Math.abs(Integer.MIN_VALUE) == Integer.MIN_VALUE and
Math.abs(Long.MIN_VALUE) == Long.MIN_VALUE.

108 of 144

Example:
ABS(ID)

ACOS

ACOS(double): double

See also Java Math.* functions.

Example:
ACOS(D)

ASIN

ASIN(double): double

See also Java Math.* functions.

Example:
ASIN(D)

ATAN

ATAN(double): double

See also Java Math.* functions.

Example:
ATAN(D)

CcOos

COS(double): double

See also Java Math.* functions.

Example:
COS(ANGLE)

coT

COT(double): double

See also Java Math.* functions.

Example:
COT(ANGLE)

SIN

SIN(double): double

See also Java Math.* functions.

109 of 144

Example:
SIN(ANGLE)

TAN

TAN(double): double

See also Java Math.* functions.

Example:
TAN(ANGLE)

ATAN2

ATAN2(double, double): double

See also Java Math.atan2.

Example:
ATAN2(X, Y)

BITAND

BITAND(int, int): int

See also Java operator &.

Example:
BITAND(A, B)

BITOR

BITOR(int, int): int

See also Java operator |.

Example:
BITOR(A, B)

BITXOR

BITXOR(int, int): int

See also Java operator .

Example:
BITXOR(A, B)

MOD

MOD(int, int): int

See also Java operator %.

110 of 144

Example:
MOD(A, B)

CEILING

CEILING(double): double

See also Java Math.ceil.

Example:
LOG(A)

DEGREES

DEGREES(double): double

See also Java Math.toDegrees.

Example:
DEGREES(A)

EXP

EXP(double): double

See also Java Math.exp.

Example:
EXP(A)

FLOOR

FLOOR(double): double

See also Java Math.floor.

Example:
FLOOR(A)

LOG

LOG(double): double

See also Java Math.log.

Example:
LOG(A)

LOG10

LOG10(double): double

See also Java Math.log10 (in Java 5).
111 of 144

Example:
LOG10(A)

RADIANS

RADIANS(double): double

See also Java Math.toRadians.

Example:
RADIANS(A)

SQRT

SQRT(double): double

See also Java Math.sqrt.

Example:
SQRT(A)

Pl

PI(): double

See also Java Math.PI.

Example:
PI()

POWER

POWER(double, double): double

See also Java Math.pow.

Example:
POWER(A, B)

RAND

RAND([int]): double

Calling the function without parameter returns the next a pseudo random number.
Calling it with an parameter seeds the session's random number generator.

Example:
RAND()

RANDOM_UUID

RANDOM_UUID(): UUID

112 of 144

Returns a new UUID with 122 pseudo random bits.

Example:
RANDOM_UUID()

ROUND

ROUND(double, digitsInt): double

Rounds to a number of digits.

Example:
ROUND(VALUE, 2)

ROUNDMAGIC

ROUNDMAGIC(double): double

This function rounds numbers in a good way but slow:

- special handling for numbers around 0

- only numbers <= +/-1000000000000

- convert to a string

- check the last 4 characters:

'000x" becomes '0000'

'999x"' becomes '999999' (this is rounded automatically).

Example:
ROUNDMAGIC(VALUE/3*3)

SECURE_RAND

SECURE_RAND(int): bytes

Generates a number of cryptographically secure random numbers.

Example:
CALL SECURE_RAND(16)

SIGN

SIGN({int | long | decimal | double}): int

Returns -1 if the value is smaller 0, 0 if zero, and otherwise 1.

Example:
SIGN(VALUE)

ENCRYPT

ENCRYPT (algorithmString, keyBytes, dataBytes): bytes

Encrypts data using a key. Supported algorithms are XTEA and AES.

The block size is 16 bytes.

Example:
CALL ENCRYPT('AES', '00', STRINGTOUTF8('Test"))

113 of 144

DECRYPT

DECRYPT (algorithmString, keyBytes, dataBytes): bytes

Decrypts data using a key. Supported algorithms are XTEA and AES.
The block size is 16 bytes.

Example:

CALL TRIM(CHAR(0) FROM UTFSTOSTRING(DECRYPT('AES', '00', '3fabb4de8f1ee2e97d7793bab2db1116')))

HASH

HASH(algorithmString, dataBytes, iterationInt): bytes

Calculate the hash value using an algorithm, and repeat this process for a number of iterations.

Currently, the only algorithm supported is SHA256.

Example:
CALL HASH('SHA256', STRINGTOUTF8('Password"), 1000)

TRUNCATE

TRUNCATE(double, digitsInt): double

Truncates to a number of digits (to the next value closer to 0).

Example:
TRUNCATE(VALUE, 2)

COMPRESS

COMPRESS(dataBytes [, algorithmString]): bytes

Compresses the data using the specified compression algorithm.
Supported algorithms are:

LZF (fast but lower compression; default),

DEFLATE (higher compression).

Compression does not always reduce size.

Very small objects and objects with little redundancy may get larger.

Example:
COMPRESS(STRINGTOUTF8('Test"))

EXPAND

EXPAND(bytes): bytes

Expands data that was compressed using the COMPRESS function.

Example:
UTF8TOSTRING(EXPAND(COMPRESS(STRINGTOUTF8('Test"))))

ZERO

ZERO(): int

114 of 144

Returns the value 0. This function can be used even if numeric literals are disabled.

Example:
ZERO()

ASCII

ASCII(string): int

Returns the ASCII value of the first character in the string.
Example:

ASCII(Hi")

BIT_LENGTH

BIT_LENGTH(string): int

Returns the number of bits in a string.
For BLOB, CLOB, BYTES and JAVA_OBIJECT, the precision is used.
Each character needs 16 bits.

Example:
BIT_LENGTH(NAME)

LENGTH

{LENGTH | CHAR_LENGTH | CHARACTER_LENGTH}(string): int

Returns the number of characters in a string.
For BLOB, CLOB, BYTES and JAVA_OBJECT, the precision is used.

Example:
LENGTH(NAME)

OCTET_LENGTH

OCTET_LENGTH(string): int

Returns the number of bytes in a string.
For BLOB, CLOB, BYTES and JAVA_OBJECT, the precision is used.
Each character needs 2 bytes.

Example:
OCTET_LENGTH(NAME)

CHAR

{CHAR | CHR}(int): string

Returns the character that represents the ASCII value.

Example:
CHAR(65)

115 of 144

CONCAT

CONCAT(string, string [,...]): string

Combines strings.

Example:
CONCAT(NAME, ")

DIFFERENCE

DIFFERENCE(string, string): int

Returns the difference between the sounds of two strings.

Example:
DIFFERENCE(T1.NAME, T2.NAME)

HEXTORAW

HEXTORAW(string): string

Converts a hex representation of a string to a string.
4 hex characters per string character are used.

Example:
HEXTORAW(DATA)

RAWTOHEX

RAWTOHEX(string): string

Converts a string to the hex representation.
4 hex characters per string character are used.

Example:
RAWTOHEX(DATA)

INSTR

INSTR(string, searchString, [, startInt]): int

Returns the location of a search string in a string (s).

If a start position is used, the characters before it are ignored.

If position is negative, the rightmost location is returned.
0 is returned if the search string is not found.

Example:
INSTR(EMAIL,'@")

INSERT Function

INSERT (originalString, startInt, lengthInt, addString): string

116 of 144

Inserts a additional string into the original string at a specified start position.
The length specifies the number of characters that are removed at the start position

in the original string.

Example:
INSERT(NAME, 1, 1,'"

LOWER

{LOWER | LCASE}(string): string

Converts a string to lowercase.

Example:
LOWER(NAME)

UPPER

{UPPER | UCASE}(string): string

Converts a string to uppercase.

Example:
UPPER(NAME)

LEFT

LEFT(string, int): string

Returns the leftmost number of characters.

Example:
LEFT(NAME, 3)

RIGHT

RIGHT(string, int): string

Returns the rightmost number of characters.

Example:
RIGHT(NAME, 3)

LOCATE

LOCATE(searchString, string [, startInt]): int

Returns the location of a search string in a string (s).

If a start position is used, the characters before it are ignored.

If position is negative, the rightmost location is returned.
0 is returned if the search string is not found.

Example:
LOCATE(".", NAME)

117 of 144

POSITION

POSITION(searchString, string): int

Returns the location of a search string in a string (s).
See also LOCATE.

Example:
POSITION('.", NAME)

LPAD

LPAD(string, int[, paddingString]): string

Left pad the string to the specified length.

If the length is shorter than the string, it will be truncated at the end.

If the padding string is not set, spaces will be used.

Example:
LPAD(AMOUNT, 10, *')

RPAD

RPAD(string, int[, paddingString]): string

Right pad the string to the specified length.
If the length is shorter than the string, it will be truncated.
If the padding string is not set, spaces will be used.

Example:
RPAD(TEXT, 10, -

LTRIM

LTRIM(string): string

Removes all leading spaces from a string.

Example:
LTRIM(NAME)

RTRIM

RTRIM(string): string

Removes all trailing spaces from a string.

Example:
RTRIM(NAME)

TRIM

TRIM([{LEADING | TRAILING | BOTH} [string] FROM]
string): string

118 of 144

Removes all leading spaces, trailing spaces, or spaces at both ends, from a string.
It is possible to remove other characters as well.

Example:
TRIM(BOTH '_' FROM NAME)

REGEXP_REPLACE

REGEXP_REPLACE(inputString, regexString, replacementString): string

Replaces each substring that matches a regular expression.
For details, see the Java String.replaceAll() method.

Example:
REGEXP_REPLACE('Hello World', ' +','")

REPEAT

REPEAT((string, int): string

Returns a string repeated some number of times.

Example:
REPEAT(NAME || '', 10)

REPLACE

REPLACE(string, searchString [, replacementString]): string

Replaces all occurrences of a search string in a text with another string.

If no replacement is specified, the search string is just removed from the original string.

Example:
REPLACE(NAME, ' ")

SOUNDEX

SOUNDEX(string): string

Returns a four character code representing the sound of a string.
See also http://www.archives.gov/genealogy/soundex.html .

Example:
SOUNDEX(NAME)

SPACE

SPACE(int): string

Returns a string consisting of a number of spaces.

Example:
SPACE(80)

119 of 144

STRINGDECODE

STRINGDECODE(string): string

Converts a encoded string using the Java string literal encoding format.
Special characters are \b, \t, \n, \f, \r, \", \\, \<octal>, \u<unicode>.

Example:
CALL STRINGENCODE(STRINGDECODE('Lines 1\nLine 2"))

STRINGENCODE

STRINGENCODE(string): string

Encodes special characters in a string using the Java string literal encoding format.
Special characters are \b, \t, \n, \f, \r, \", \\, \<octal>, \u<unicode>.

Example:
CALL STRINGENCODE(STRINGDECODE('Lines 1\nLine 2"))

STRINGTOUTF8

STRINGTOUTF8(string): bytes

Encodes a string to a byte array using the UTF8 encoding format.

Example:
CALL UTF8TOSTRING(STRINGTOUTF8('This is a test"))

SUBSTRING

{SUBSTRING | SUBSTR}(string, startInt [, lengthInt]): string

Returns a substring of a string starting at a position.
The length is optional.
Also supported is: SUBSTRING(string FROM start [FOR length]).

Example:
SUBSTR(NAME, 1)

UTF8TOSTRING

UTF8TOSTRING(bytes): string

Decodes a byte array in the UTF8 format to a string.

Example:
CALL UTF8TOSTRING(STRINGTOUTF8('This is a test"))

XMLATTR

XMLATTR(nameString, valueString): string

Creates an XML attribute element of the form name="value".
The value is encoded as XML text.

120 of 144

Example:
CALL XMLNODE('a', XMLATTR('href', 'http://h2database.com"))

XMLNODE

XMLNODE(elementString [, attributesString [, contentString]]): string

Create an XML node element.

Example:
CALL XMLNODE('a', XMLATTR('href', 'http://h2database.com'), 'H2")

XMLCOMMENT

XMLCOMMENT(commentString): string

Creates an XML comment. Two dashes (--) are converted to - -.

Example:
CALL XMLCOMMENT('Test")

XMLCDATA

XMLCDATA(valueString): string

Creates an XML CDATA element. If the value contains ']]>', an XML text element is created instead.

Example:
CALL XMLCDATA('data")

XMLSTARTDOC

XMLSTARTDOC(): string

The string '<?xml version="1.0"?>" is returned.

Example:
CALL XMLSTARTDOC()

XMLTEXT

XMLTEXT (valueString): string

Creates an XML text element.

Example:
CALL XMLTEXT('test")

ARRAY_GET
ARRAY_GET (arrayExpression, indexExpression): value

Returns one element of an array.

121 of 144

Example:
CALL ARRAY_GET(('Hello', 'World"), 2)

ARRAY_LENGTH

ARRAY_GET(arrayExpression): int

Returns the length of an array.

Example:
CALL ARRAY_LENGTH(("Hello', 'World"))

AUTOCOMMIT

AUTOCOMMIT(): boolean

Returns true if auto commit is switched on for this session.

Example:
AUTOCOMMIT()

CANCEL_SESSION

CANCEL_SESSION(sessionInt): boolean

Cancels the currently executing statement of another session.

The method only works if the multithreaded kernel is enabled (see SET MULTI_THREADED).
Returns true if the statement was canceled, false if the session is closed

or no statement is currently executing.

Admin rights are required to execute this command.

Example:
CANCEL_SESSION(3)

CASEWHEN Function

CASEWHEN(boolean, aValue, bValue): value

Returns 'a' if the boolean expression is true, otherwise 'b'.

Example:
CASEWHEN(ID=1, 'A', 'B")

CAST

CAST(value AS dataType): value

Converts a value to another data type.

Example:
CAST(NAME AS INT)

122 of 144

COALESCE

COALESCE(aValue, bValue [,...]): value

Returns the first value that is not null.

Example:
COALESCE(A, B, C)

CONVERT

CONVERT(value, dataType): value

Converts a value to another data type.

Example:
CONVERT(NAME, INT)

CURRVAL

CURRVAL([schemaName,] sequenceString): long

Returns the current (last) value of the sequence.
If the schema name is not set, the current schema is used.
If the schema name is not set, the sequence name is converted to uppercase (for compatibility).

Example:
CURRVAL('TEST_SEQ")

CSVREAD

CSVREAD(fileNameString [, columnNamesString [, charsetString [, fieldSeparatorString [, fieldDelimiterString
[, escapeCharacterString [, nullString]1111]): resultSet

Returns the result set of reading the CSV (comma separated values) file.

For each parameter, NULL means the default value should be used.

If the column names are specified (a list of column names separated with the fieldSeparator),

those are used they are read from the file, otherwise (or if they are set to NULL) the first line

of the file is interpreted as the column names.

The default charset is the default value for this system, and the default field separator is a comma.

Missing unquoted values as well as data that matches the null string is parsed as NULL.

This function can be used like a table: SELECT * FROM CSVREAD(...).

Instead of a file, an URL may be used, for example jar:file:///c:/temp/example.zip!/org/example/nested.zip.
Admin rights are required to execute this command.

Example:

CALL CSVREAD('test.csv");

-- Read a file containing the columns ID, NAME with UTF-8 encoding and the pipe (]) as field separator
CALL CSVREAD('test2.csv', 'ID|NAME', 'UTF-8', '[");

-- Read a semicolon-separated file

SELECT * FROM CSVREAD('data/test.csv', NULL, NULL, ;");

CSVWRITE

CSVWRITE(fileNameString, queryString [, charsetString [, fieldSeparatorString [, fieldDelimiterString
[, escapeCharacterString [, nullString [, lineSeparatorString]]1111]): int

123 of 144

Writes a CSV (comma separated values).
The file is overwritten if it exists.
For each parameter, NULL means the default value should be used.

The default charset is the default value for this system, and the default field separator is a comma.

The null string is used when writing NULL (by default nothing is written when NULL appears).
The default line separator is the default value for this system ('line.separator' system property).
The returned value is the number or rows written.

Admin rights are required to execute this command.

Example:

CALL CSVWRITE('test.csv', 'SELECT * FROM TEST");

-- Write a file with UTF-8 encoding and the pipe (|) as field separator
CALL CSVWRITE('test2.csv', 'SELECT * FROM TEST', 'UTF-8', '|');

DATABASE

DATABASE(): string

Returns the name of the database.

Example:
CALL DATABASE();

DATABASE_PATH

DATABASE_PATH(): string

Returns the directory of the database files and the database name, if it is file based.
Returns NULL otherwise.

Example:
CALL DATABASE_PATH();

FILE_READ

FILE_READ(fileNameString [,encodingString]): value

Returns the contents of a file. If only one parameter is supplied,
the data are returned as a BLOB. If two parameters are used,

the data is returned as a CLOB (text). The second parameter

is the character set to use, NULL meaning the default character set
for this system. File names and URLs are supported.

Admin rights are required to execute this command.

Example:
SELECT LENGTH(FILE_READ('~/.h2.server.properties')) LEN;
SELECT FILE_READ('http://localhost:8182/stylesheet.css', NULL) CSS;

GREATEST

GREATEST (aValue, bValue [,...]): value

Returns the largest value that is not NULL, or NULL if all values are NULL.

Example:
CALL GREATEST(1, 2, 3);

124 of 144

IDENTITY

IDENTITY(): long

Returns the last inserted identity value for this session.

Example:
CALL IDENTITY();

IFNULL

IFNULL(aValue, bValue): value

Returns the value of 'a' if it is not null, otherwise 'b'.

Example:
CALL IFNULL(NULL, ");

LEAST

LEAST(aValue, bValue [,...]): value

Returns the smallest value that is not NULL, or NULL if all values are NULL.

Example:
CALL LEAST(1, 2, 3);

LOCK_MODE
LOCK_MODE(): int

Returns the current lock mode. See SET LOCK_MODE.

Example:
CALL LOCK_MODE();

LOCK_TIMEOUT
LOCK_TIMEOUT(): int

Returns the lock timeout of the current session (in milliseconds).

Example:
LOCK_TIMEOUT()

LINK_SCHEMA

LINK_SCHEMA(targetSchemasString, driverString, urlString,
userString, passwordString, sourceSchemastring): resultSet

Creates table links for all tables in a schema.

If tables with the same name already exist, they are dropped first.
The target schema is created automatically if it does not yet exist.

The driver name may be empty if the driver is already loaded.

125 of 144

The list of tables linked is returned.
Admin rights are required to execute this command.

Example:
CALL LINK_SCHEMA('TEST2', ", 'jdbc:h2:test2', 'sa’, 'sa’, 'PUBLIC');

MEMORY_FREE

MEMORY_FREE(): int

Returns the free memory in KB (where 1024 bytes is a KB).
The garbage is run before returning the value.
Admin rights are required to execute this command.

Example:
MEMORY_FREE()

MEMORY_USED

MEMORY_USED(): int

Returns the used memory in KB (where 1024 bytes is a KB).
The garbage is run before returning the value.
Admin rights are required to execute this command.

Example:
MEMORY_USED()

NEXTVAL

NEXTVAL([schemaName,] sequenceString): long

Returns the next value of the sequence.
If the schema name is not set, the current schema is used.
If the schema name is not set, the sequence name is converted to uppercase (for compatibility).

Example:
NEXTVAL('TEST_SEQ")

NULLIF

NULLIF(aValue, bValue): value

Returns NULL if 'a' is equals to 'b', otherwise 'a'.

Example:
NULLIF(A, B)

READONLY

READONLY(): boolean

Returns true if the database is read-only.

Example:
READONLY()
126 of 144

ROWNUM

ROWNUM(): int

Returns the number of the current row. This function is supported for SELECT statements,
as well as for DELETE and UPDATE. The first row has the row number 1, and is calculated
before ordering and grouping the result set.

Example:
SELECT ROWNUM(), * FROM TEST

SCHEMA

SCHEMA(): string

Returns the name of the default schema for this session.

Example:
CALL SCHEMA()

SESSION_ID

SESSION_ID(): int

Returns the unique session id number for the current database connection.
This id stays the same while the connection is open.
The database engine may re-use a session id after the connection is closed.

Example:
CALL SESSION_ID()

SET

SET(@variableName, value): value

Updates a variable with the given value. The new value is returned.
When used in a query, the value is updated in the order the rows are read.

Example:
SELECT X, SET(@I, IFNULL(@I, 0)+X) RUNNING_TOTAL FROM SYSTEM_RANGE(1, 10)

TABLE

TABLE|TABLE_DISTINCT({ name dataType = expression } [,..]): result set

Returns the result set. TABLE_DISTINCT removes duplicate rows.

Example:
SELECT * FROM TABLE(ID INT=(1, 2), NAME VARCHAR=("Hello', 'World"))

USER

{USER | CURRENT_USER}(): string

Returns the name of the current user of this session.
127 of 144

Example:
CURRENT_USER()

CURRENT_DATE

{CURRENT_DATE[()] | CURDATE() | SYSDATE | TODAY}: date

Returns the current date.

Example:
CURRENT_DATE()

CURRENT_TIME

{CURRENT_TIME[()] | CURTIME()}: time

Returns the current time.

Example:
CURRENT_TIME()

CURRENT_TIMESTAMP

{CURRENT_TIMESTAMP[([int])] | NOW([int])}: timestamp

Returns the current timestamp.
The precision parameter for nanoseconds precision is optional.

Example:
CURRENT_TIMESTAMP()

DATEADD

DATEADD(unitString, addInt, timestamp): timestamp

Adds units to a timestamp. The string indicates the unit. Use negative values to subtract units.

The same units as in the EXTRACT function are supported.

Example:
DATEADD('MONTH', 1, DATE '2001-01-31")

DATEDIFF

DATEDIFF(unitString, aTimestamp, bTimestamp): long

Returns the difference between two timestamps. The string indicates the unit.

The same units as in the EXTRACT function are supported.

Example:
DATEDIFF('YEAR', T1.CREATED, T2.CREATED)

DAYNAME

DAYNAME(date): string

128 of 144

Returns the name of the day (in English).

Example:
DAYNAME(CREATED)

DAY_OF_MONTH
DAY_OF_MONTH(date): int

Returns the day of the month (1-31).

Example:
DAY_OF_MONTH(CREATED)

DAY_OF_WEEK
DAY_OF_WEEK(date): int

Returns the day of the week (1 means Sunday).

Example:
DAY_OF_WEEK(CREATED)

DAY_OF_YEAR
DAY_OF_YEAR(date): int

Returns the day of the year (1-366).

Example:
DAY_OF_YEAR(CREATED)

EXTRACT

EXTRACT(

{YEAR | YY | MONTH | MM | DAY | DD | DAY_OF_YEAR | DOY |
HOUR | HH | MINUTE | MI | SECOND | SS | MILLISECOND | MS}
FROM timestamp): int

Returns a specific value from a timestamps.

Example:
EXTRACT(SECOND FROM CURRENT_TIMESTAMP)

FORMATDATETIME
FORMATDATETIME(timestamp, formatString [, localeString [, timeZoneString]]): string

Formats a date, time or timestamp as a string.
The most important format characters are: y year, M month, d day, H hour, m minute, s second
For details of the format, see java.text.SimpleDateFormat.

Example:

CALL FORMATDATETIME(TIMESTAMP '2001-02-03 04:05:06', 'EEE, d MMM yyyy HH:mm:ss Z', 'en’, 'GMT")

129 of 144

HOUR

HOUR(timestamp): int

Returns the hour (0-23) from a timestamp.

Example:
HOUR(CREATED)

MINUTE

MINUTE(timestamp): int

Returns the minute (0-59) from a timestamp.

Example:
MINUTE(CREATED)

MONTH

MONTH(timestamp): int

Returns the month (1-12) from a timestamp.

Example:
MONTH(CREATED)

MONTHNAME

MONTHNAME(date): string

Returns the name of the month (in English).

Example:
MONTHNAME(CREATED)

PARSEDATETIME

PARSEDATETIME(string, formatString [, localeString [, timeZoneString]]): string

Parses a string and returns a timestamp.
The most important format characters are: y year, M month, d day, H hour, m minute, s second
For details of the format, see java.text.SimpleDateFormat.

Example:
CALL PARSEDATETIME('Sat, 3 Feb 2001 03:05:06 GMT', 'EEE, d MMM yyyy HH:mm:ss Z, 'en’, 'GMT")

QUARTER

QUARTER(timestamp): int

Returns the quarter (1-4) from a timestamp.

130 of 144

Example:
QUARTER(CREATED)

SECOND

SECOND(timestamp): int

Returns the second (0-59) from a timestamp.

Example:
SECOND(CREATED)

WEEK

WEEK(timestamp): int

Returns the week (1-53) from a timestamp.
This method uses the current system locale.

Example:
WEEK(CREATED)

YEAR

YEAR(timestamp): int

Returns the year from a timestamp.

Example:
YEAR(CREATED)

131 of 144

Data Types

INT Type
BOOLEAN Type
TINYINT Type
SMALLINT Type
BIGINT Type
IDENTITY Type
DECIMAL Type
DOUBLE Type
REAL Type
TIME Type
DATE Type
TIMESTAMP Type
BINARY Type
OTHER Type
VARCHAR Type
VARCHAR_IGNORECASE Type
CHAR Type
BLOB Type
CLOB Type
UUID Type
ARRAY Type

INT Type
INT | INTEGER | MEDIUMINT | INT4 | SIGNED

Possible values: -2147483648 to 2147483647.
See also java.lang.Integer.

Example:
INT

BOOLEAN Type
BOOLEAN | BIT | BOOL

Possible values: TRUE and FALSE.
See also java.lang.Boolean.

Example:
BOOLEAN

TINYINT Type
TINYINT

Possible values are: -128 to 127.
See also java.lang.Byte.

Example:
TINYINT

SMALLINT Type

SMALLINT | INT2 | YEAR

132 of 144

Possible values: -32768 to 32767.
See also java.lang.Short.

Example:
SMALLINT

BIGINT Type

BIGINT | INT8

Possible values: -9223372036854775808 to 9223372036854775807.
See also java.lang.Long.

Example:
BIGINT

IDENTITY Type
IDENTITY

Auto-Increment value.
Possible values: -9223372036854775808 to 9223372036854775807.
See also java.lang.Long.

Example:
IDENTITY

DECIMAL Type

{DECIMAL | NUMBER | DEC | NUMERIC} (precisionInt [, scaleInt])

Data type with fixed precision and scale.
This data type is recommended for storing currency values.
See also java.math.BigDecimal.

Example:
DECIMAL(20, 2)

DOUBLE Type

{DOUBLE [PRECISION] | FLOAT | FLOAT4 | FLOATS8}

Floating point number.

Should not be used to represent currency values, because of rounding problems.

See also java.lang.Double.

Example:
DOUBLE

REAL Type

REAL

Single precision floating point number.

Should not be used to represent currency values, because of rounding problems.

See also java.lang.Float.

133 of 144

Example:
REAL

TIME Type
TIME

The format is hh:mm:ss.
See also java.sql.Time.

Example:
TIME

DATE Type
DATE

The format is yyyy-MM-dd.
See also java.sqgl.Date.

Example:
DATE

TIMESTAMP Type

{TIMESTAMP | DATETIME | SMALLDATETIME}

The format is yyyy-MM-dd hh:mm:ss[.nnnnnnnnn].
See also java.sqgl.Timestamp.

Example:
TIMESTAMP

BINARY Type

{BINARY | VARBINARY | LONGVARBINARY | RAW | BYTEA}
[(precisionInt)]

Represents a byte array. For very long arrays, use BLOB.

There is no maximum precision. The maximum size is the memory available.
The precision is a size constraint; only the actual data is persisted.

The whole object is kept in memory when using this data type.

For large text data BLOB should be used.

Example:
BINARY(1000)

OTHER Type

OTHER

This type allows storing serialized Java objects. Internally, a byte array is used.
Serialization and deserialization is done on the client side only.
Deserialization is only done get getObject is called.

Java operations cannot be executed inside the database engine for security reasons.

Use PreparedStatement.setObject to store values.

134 of 144

Example:
OTHER

VARCHAR Type

{VARCHAR | LONGVARCHAR |
VARCHAR2 | NVARCHAR | NVARCHAR?2 | VARCHAR_CASESENSITIVE}
[(precisionInt)]

Unicode String. Use two single quotes (") to create a quote.

There is no maximum precision. The maximum size is the memory available.
The precision is a size constraint; only the actual data is persisted.

For large text data CLOB should be used; see there for details.

See also java.lang.String.

Example:
VARCHAR(255)

VARCHAR_IGNORECASE Type

VARCHAR_IGNORECASE [(precisionInt)]

Same as VARCHAR, but not case sensitive when comparing. Stored in mixed case.
There is no maximum precision. The maximum size is the memory available.
For large text data CLOB should be used; see there for details.

Example:
VARCHAR_IGNORECASE

CHAR Type

{CHAR | CHARACTER | NCHAR}
[(precisionInt)]

This type is supported for compatibility with other databases and older applications.

The difference to VARCHAR is that trailing spaces are ignored and not persisted.
Unicode String. Use two single quotes (") to create a quote.

There is no maximum precision. The maximum size is the memory available.
For large text data CLOB should be used; see there for details.

Example:
CHAR(10)

BLOB Type

{BLOB | TINYBLOB | MEDIUMBLOB | LONGBLOB | IMAGE | OID}
[(precisionInt)]

Like BINARY, but intended for very large values such as files or images.
Unlike when using BINARY, large objects are not kept fully in-memory.
Use PreparedStatement.setBinaryStream to store values.

Example:
BLOB

135 of 144

CLOB Type

{CLOB | TINYTEXT | TEXT | MEDIUMTEXT | LONGTEXT | NTEXT | NCLOB}

[(precisionInt)]

CLOB is like VARCHAR, but intended for very large values.

Unlike when using VARCHAR, large CLOB objects are not kept fully in-memory.
CLOB should be used for documents and texts with arbitrary size such as

XML or HTML documents, text files, or memo fields of unlimited size.

VARCHAR should be used for text with relatively short average size (for example
shorter than 200 characters). Short CLOB values are stored inline, but there is an

overhead compared to VARCHAR.
Use PreparedStatement.setCharacterStream to store values.

Example:
CLOB

UUID Type

UUID

Universally unique identifier. This is a 128 bit value.

Use PreparedStatement.setBytes or setString to store values.

Example:
UuUID

ARRAY Type
ARRAY

An array of values.

Use a value list (1, 2) or PreparedStatement.setObject(.., new Object[]{..}) to store values.

Example:
ARRAY

136 of 144

Portability
Environment

Building the Software
Build Targets

Using Maven 2
Translating

Providing Patches

Portability

This database is written in Java and therefore works on many platforms. It can also be compiled to a native executable using
GCl.

Environment
A Java Runtime Environment (JRE) version 1.4 or higher is required to run this database.

To build the database executables, the following software stack was used. Newer version or compatible software works too.

* Windows XP

e Sun JDK Version 1.4 and 1.6

» Eclipse Version 3.3

« Eclipse Plugins: Subclipse 1.2.4, EclIEmma Java Code Coverage 1.3.0, Eclipse Checkstyle Plug-in 4.4.0
* Mozilla Firefox 3.0

* OpenOffice 3.0

* NSIS 2.38 (Nullsoft Scriptable Install System)

* Maven 2.0.7

* YourKit Java Profiler

Building the Software

On the command line, go to the directory h2 and execute the following command:
build -?

For Linux and OS X, use ./build.sh instead of build .

You will get a list of targets. If you want to build the jar file, execute (Windows):

build jar

Build Targets

The build system can generate smaller jar files as well. The following targets are currently supported:

+ jarClient: Create the h2client.jar. This only contains the remote JDBC implementation.
« jarSmall: Create the file h2small.jar. This only contains the embedded database. Debug information is disabled.

137 of 144

« jarJaqu: Create the file h2jaqu.jar. This only contains the JaQu (Java Query) implementation. All other jar files do not
include JaQu.

To create the h2client.jar file, go to the directory h2 and execute the following command:

build jarClient

Using Maven 2

Using a Central Repository

You can include the database in your Maven 2 project as a dependency. Example:

<dependency>
<groupld>com.h2database</groupld>
<artifactIld>h2</artifactld>
<version>1.1.102</version>
</dependency>

New versions of this database are first uploaded to http://hsqgl.sourceforge.net/m2-repo/ and then automatically synchronized
with the main maven repository; however after a new release it may take a few hours before they are available there.
Using Snapshot Version

To build a 'snapshot' H2 .jar file and upload it the to the local Maven 2 repository, execute the following command:
build mavenInstallLocal
Afterwards, you can include the database in your Maven 2 project as a dependency:

<dependency>
<groupld>com.h2database</groupld>
<artifactld>h2</artifactld>
<version>1.0-SNAPSHOT </version>
</dependency>

Translating
The translation of this software is split into the following parts:

* H2 Console: src/main/org/h2/server/web/res/_text_*.properties
« Error messages: src/main/org/h2/res/_messages_*.properties
* Web site: src/docsrc/text/_docs_*.utf8.txt

To translate the H2 Console, start it and select Options / Translate. The conversion between UTF-8 and Java encoding (using
the \u syntax), as well as the HTML entities (&#..;) is automated by running the tool PropertiesTOUTF8. The web site
translation is automated as well, using build docs .

138 of 144

Providing Patches
If you like to provide patches, please consider the following guidelines to simplify merging them:

e Only use Java 1.4 features (not use Java 1.5 or 1.6) (see Environment).

» Follow the coding style used in the project, use Checkstyle (see above) to check the coding style.

» Please provide test cases and integrate them into the test suite. For Java level tests, see
src/test/org/h2/test/TestAll.java. For SQL level tests, see src/test/org/h2/test/test.in.txt or testSimple.in.txt

* The test cases should cover at least 90% of the changed/new code; use a code coverage tool to verify that (see
above).

» Verify that you did not break other features: Run the test cases by executing build test.

* Provide end user documentation if required (src/docsrc/html/*).

* Document grammar changes in src/main/org/h2/res/help.csv

« Provide a change log entry (src/docsrc/html/changelog.html).

» Submit patches as .patch files (compressed if big). To create a patch, use for example Eclipse Team/Create Patch.

139 of 144

History and Roadmap

Change Log

Roadmap

History of this Database Engine
Why Java

Supporters

Change Log

The up-to-date change log is available at http://www.h2database.com/html/changelog.html

Roadmap

The current roadmap is available at http://www.h2database.com/html/roadmap.html

History of this Database Engine

The development of H2 was started in May 2004, but it was first published on December 14th 2005. The author of H2, Thomas
Mueller, is also the original developer of Hypersonic SQL. In 2001, he joined PointBase Inc. where he created PointBase Micro.
At that point, he had to discontinue Hypersonic SQL, but then the HSQLDB Group was formed to continued to work on the
Hypersonic SQL codebase. The name H2 stands for Hypersonic 2; however H2 does not share any code with Hypersonic SQL or
HSQLDB. H2 is built from scratch.

Why Java

A few reasons using a Java database are:

* Very simple to integrate in Java applications

« Support for many different platforms

« More secure than native applications (no buffer overflows)
» User defined functions (or triggers) run very fast

* Unicode support

Some people think that Java is still too slow for low level operations, but this is not the case (not any more). In general, the
code can be written a lot faster than using C or C++. Like that, it is possible to concentrate on improving the algorithms (that
make the application faster) rather than porting the code and dealing with low level stuff (such as memory management or
dealing with threads). Garbage collection is now probably faster than manual memory management.

A lot of features are already built in (for example Unicode, network libraries). It is very easy to write secure code because
buffer overflows can not occur. Some features such as the reflection mechanism can be used for randomized testing.

Java is also future proof: A lot of companies support Java, and it is now open source.

This software does not rely on many Java libraries or other software, to increase the portability and ease of use, and for
performance reasons. For example, the encryption algorithms and many library functions are implemented in the database
instead of using the existing libraries. Libraries that are not available in open source Java implementations (such as Swing) are
not used or only used for specific features.

140 of 144

http://www.h2database.com/html/roadmap.html
http://www.h2database.com/html/changelog.html

Supporters

Many thanks for those who helped by finding and reporting bugs, gave valuable feedback, spread the word and have translated
this project. Also many thanks to the donors who contributed via PayPal:

* Frank Berger, Germany

« Ashwin Jayaprakash, USA

* Florent Ramiere, France

e Jun Iyama, Japan

* Antonio Casqueiro, Portugal
* Oliver Computing LLC, USA
» Harpal Grover Consulting Inc., USA
» Elisabetta Berlini, Italy

» William Gilbert, USA

» Antonio Dieguez, Chile

* Ontology Works, USA

e lumber-mill.co.jp, Japan

« Pete Haidinyak, USA

141 of 144

http://ontologyworks.com/

Frequently Asked Questions

Are there Known Bugs? When is the Next Release?
Is this Database Engine Open Source?

My Query is Slow

How to Create a New Database?

How to Connect to a Database?

Where are the Database Files Stored?

What is the Size Limit (Maximum Size) of a Database?
Is it Reliable?

Why is Opening my Database Slow?

Is the GCJ Version Stable? Faster?

How to Translate this Project?

Are there Known Bugs? When is the Next Release?
Usually, bugs get fixes as they are found. There is a release every few weeks. Here is the list of known and confirmed issues:

* Some problems have been found with right outer join. Internally, it is converted to left outer join, which does not
always produce the same results as other databases when used in combination with other joins.

* When using Install4j before 4.1.4 on Linux and enabling 'pack200', the h2.jar becomes corrupted by the install
process, causing application failure. A workaround is to add an empty file h2.jar.nopack next to the h2.jar file. This
problem is solved in Install4j 4.1.4.

Is this Database Engine Open Source?

Yes. It is free to use and distribute, and the source code is included. See also under license.

My Query is Slow
Slow SELECT (or DELETE, UPDATE, MERGE) statement can have multiple reasons. Follow this checklist:

¢ Run ANALYSE (see documentation for details).

* Run the query with EXPLAIN and check if indexes are used (see documentation for details).
» If required, create additional indexes and try again using ANALYZE and EXPLAIN.

« If it doesn't help please report the problem.

How to Create a New Database?

By default, a new database is automatically created if it does not yet exist.

How to Connect to a Database?

The database driver is org.h2.Driver , and the database URL starts with jdbc:h2: . To connect to a database using JDBC, use
the following code:

Class.forName("org.h2.Driver");
Connection conn = DriverManager.getConnection("jdbc:h2:~/test", "sa", "");

142 of 144

Where are the Database Files Stored?

When using database URLs like jdbc:h2:~/test, the database is stored in the user directory. For Windows, this is usually
C:\Documents and Settings\<userName>. If the base directory is not set (as in jdbc:h2:test), the database files are stored in
the directory where the application is started (the current working directory). When using the H2 Console application from the
start menu, this is [Installation Directory]/bin. The base directory can be set in the database URL. A fixed or relative path can
be used. When using the URL jdbc:h2:file:data/sample, the database is stored in the directory data (relative to the current
working directory). The directory is created automatically if it does not yet exist. It is also possible to use the fully qualified
directory (and for Windows, drive) name. Example: jdbc:h2:file:C:/data/test

What is the Size Limit (Maximum Size) of a Database?

The theoretical limit is currently 256 GB for the data. This number is excluding BLOB and CLOB data: Every CLOB or BLOB can
be up to 256 GB as well. The size limit of the index data is 256 GB as well.

The maximum file size for FAT or FAT32 file systems is 4 GB. So if you use FAT or FAT32, the limit is 4 GB for the data.

The larger the database, the more main memory is required. Currently the minimum main memory required for a 12 GB
database is around 240 MB.

Is it Reliable?

That is not easy to say. It is still a quite new product. A lot of tests have been written, and the code coverage of these tests is
very high. Randomized stress tests are run regularly. But as this is a relatively new product, there are probably some problems
that have not yet been found (as with most software). Some features are known to be dangerous by design, and some
problems are hard to solve. Those are:

» Using SET LOG 0 to disable the transaction log file.

» Using the transaction isolation level READ_UNCOMMITTED (LOCK_MODE 0) while at the same time using multiple
connections may result in inconsistent transactions.

* Using FILE_LOCK=NO in the database URL.

In addition to that, running out of memory should be avoided. In some versions, OutOfMemory errors while using the database
could corrupt a databases. Not all such problems may be fixed.

Areas that are not fully tested:

« Platforms other than Windows XP or Linux, or JVMs other than Sun 1.4 - 1.6

* The features AUTO_SERVER and AUTO_RECONNECT

e The MVCC (multi version concurrency) mode

e Cluster mode, 2-phase commit, savepoints

e 24/7 operation

* Some operations on databases larger than 500 MB may be slower than expected
e Multi-threading and using multiple connections

» The optimizer may not always select the best plan

Areas considered Experimental:

* The PostgreSQL server
« Compatibility modes for other databases (only some features are implemented)
» The ARRAY data type and related functionality

143 of 144

Why is Opening my Database Slow?

If it takes a long time to open a database, in most cases it was not closed the last time. This is specially a problem for larger
databases. To close a database, close all connections to it before the application ends, or execute the command SHUTDOWN.
The database is also closed when the virtual machine exits normally by using a shutdown hook. However killing a Java process
or calling Runtime.halt will prevent this.

To find out what the problem is, open the database in embedded mode using the H2 Console. This will print progress
information. If you have many 'Creating index' lines it is an indication that the database was not closed the last time.

Other possible reasons are: the database is very big (many GB), or contains linked tables that are slow to open.

Is the GCJ Version Stable? Faster?

The GCJ version is not as stable as the Java version. When running the regression test with the GCJ version, sometimes the
application just stops at what seems to be a random point without error message. Currently, the GCJ version is also slower than
when using the Sun VM. However, the startup of the GCJ version is faster than when using a VM.

How to Translate this Project?

For more information, see Build/Translating .

144 of 144

	H2 Database Engine
	Quickstart
	Embedding H2 in an Application
	The H2 Console Application
	Step-by-Step
	Installation
	Start the Console
	Login
	Sample
	Execute
	Disconnect
	End

	Installation
	Requirements
	Supported Platforms
	Installing the Software
	Directory Structure

	Tutorial
	Starting and Using the H2 Console
	Firewall
	Native Version
	Testing Java
	Error Message 'Port is in use'
	Using another Port
	Starting Successfully
	Connecting to the Server using a Browser
	Multiple Concurrent Sessions
	Application Properties
	Login
	Error Messages
	Adding Database Drivers
	Using the Application
	Inserting Table Names or Column Names
	Disconnecting and Stopping the Application

	Connecting to a Database using JDBC
	Creating New Databases
	Using the Server
	Starting the Server from Command Line
	Connecting to the TCP Server
	Starting the Server within an Application
	Stopping a TCP Server from Another Process

	Using Hibernate
	Using TopLink and Glassfish
	Using Databases in Web Applications
	Embedded Mode
	Server Mode
	Using a Servlet Listener to Start and Stop a Database

	CSV (Comma Separated Values) Support
	Writing a CSV File from Within a Database
	Reading a CSV File from Within a Database
	Writing a CSV File from a Java Application
	Reading a CSV File from a Java Application

	Upgrade, Backup, and Restore
	Database Upgrade
	Backup using the Script Tool
	Restore from a Script
	Online Backup

	Command Line Tools
	Using OpenOffice Base
	Java Web Start / JNLP
	Using a Connection Pool
	Fulltext Search
	Using the Native Full Text Search
	Using the Lucene Fulltext Search

	User-Defined Variables
	Date and Time

	Features
	Feature List
	Main Features
	Additional Features
	SQL Support
	Security Features
	Other Features and Tools

	Limitations
	Comparison to Other Database Engines
	Derby and HSQLDB
	DaffodilDb and One$Db
	McKoi

	H2 in Use
	Connection Modes
	Embedded Mode
	Remote Mode
	Mixed Mode

	Database URL Overview
	Connecting to an Embedded (Local) Database
	Memory-Only Databases
	Connecting to a Database with File Encryption
	Database File Locking
	Opening a Database Only if it Already Exists
	Closing the Database
	Delayed Database Closing
	Don't Close the Database when the VM Exits

	Log Index Changes
	Ignore Unknown Settings
	Changing Other Settings when Opening a Connection
	Custom File Access Mode
	Multiple Connections
	Opening Multiple Databases at the Same Time
	Multiple Connections to the Same Database: Client/Server
	Multithreading Support
	Locking, Lock-Timeout, Deadlocks

	Database File Layout
	Moving and Renaming Database Files
	Backup

	Logging and Recovery
	Compatibility
	Compatibility Modes
	PostgreSQL Compatibility Mode
	MySQL Compatibility Mode
	HSQLDB Compatibility Mode
	MS SQL Server Compatibility Mode
	Derby Compatibility Mode
	Oracle Compatibility Mode

	Auto-Reconnect
	Automatic Mixed Mode
	Using the Trace Options
	Trace Options
	Setting the Maximum Size of the Trace File
	Java Code Generation
	Enabling the Trace Option at Runtime by Manually Creating a File

	Using Other Logging APIs
	Read Only Databases
	Read Only Databases in Zip or Jar File
	Binary and Text Storage Formats
	Graceful Handling of Low Disk Space Situations
	Opening a Corrupted Database

	Computed Columns / Function Based Index
	Multi-Dimensional Indexes
	Using Passwords
	Using Secure Passwords
	Passwords: Using Char Arrays instead of Strings
	Passing the User Name and/or Password in the URL

	User-Defined Functions and Stored Procedures
	Function Data Type Mapping
	Functions that require a Connection
	Functions throwing an Exception
	Functions returning a Result Set
	Using SimpleResultSet
	Using a Function as a Table

	Triggers
	Compacting a Database
	Cache Settings

	Performance
	Performance Comparison
	Embedded
	Client-Server
	Benchmark Results and Comments
	H2
	HSQLDB
	Derby
	PostgreSQL
	MySQL
	Firebird
	Why Oracle / MS SQL Server / DB2 are Not Listed

	About this Benchmark
	Number of Connections
	Real-World Tests
	Comparing Embedded with Server Databases
	Test Platform
	Multiple Runs
	Memory Usage
	Delayed Operations
	Transaction Commit / Durability
	Using Prepared Statements
	Currently Not Tested: Startup Time

	PolePosition Benchmark
	Application Profiling
	Analyze First

	Database Profiling
	Database Performance Tuning
	Virus Scanners
	Using the Trace Options
	Index Usage
	Optimizer
	Expression Optimization
	COUNT(*) Optimization
	Updating Optimizer Statistics / Column Selectivity
	Optimization Examples

	Advanced Topics
	Result Sets
	Limiting the Number of Rows
	Large Result Sets and External Sorting

	Large Objects
	Storing and Reading Large Objects

	Linked Tables
	Transaction Isolation
	Table Level Locking
	Lock Timeout

	Multi-Version Concurrency Control (MVCC)
	Clustering / High Availability
	Using the CreateCluster Tool
	Clustering Algorithm and Limitations

	Two Phase Commit
	Compatibility
	Transaction Commit when Autocommit is On
	Keywords / Reserved Words

	Standards Compliance
	Run as Windows Service
	Install the Service
	Start the Service
	Connect to the H2 Console
	Stop the Service
	Uninstall the Service

	ODBC Driver
	ODBC Installation
	Starting the Server
	ODBC Configuration
	PG Protocol Support Limitations
	Security Considerations

	Using H2 in Microsoft .NET
	Using the ADO.NET API on .NET
	Using the JDBC API on .NET

	ACID
	Atomicity
	Consistency
	Isolation
	Durability

	Durability Problems
	Ways to (Not) Achieve Durability
	Running the Durability Test

	Using the Recover Tool
	File Locking Protocols
	File Locking Method 'File'
	File Locking Method 'Socket'

	Protection against SQL Injection
	What is SQL Injection
	Disabling Literals
	Using Constants
	Using the ZERO() Function

	Restricting Class Loading and Usage
	Security Protocols
	User Password Encryption
	File Encryption
	Wrong Password Delay
	HTTPS Connections

	SSL/TLS Connections
	Universally Unique Identifiers (UUID)
	Settings Read from System Properties
	Setting the Server Bind Address
	Limitations
	Glossary and Links

	SQL Grammar
	Commands (Data Manipulation)
	Commands (Data Definition)
	Commands (Other)
	Other Grammar
	System Tables
	SELECT
	INSERT
	UPDATE
	DELETE
	BACKUP
	CALL
	EXPLAIN
	MERGE
	RUNSCRIPT
	SCRIPT
	ALTER INDEX RENAME
	ALTER SEQUENCE
	ALTER TABLE ADD
	ALTER TABLE ADD CONSTRAINT
	ALTER TABLE ALTER COLUMN
	ALTER TABLE ALTER COLUMN RENAME
	ALTER TABLE ALTER COLUMN RESTART
	ALTER TABLE ALTER COLUMN SELECTIVITY
	ALTER TABLE ALTER COLUMN SET DEFAULT
	ALTER TABLE ALTER COLUMN SET NOT NULL
	ALTER TABLE ALTER COLUMN SET NULL
	ALTER TABLE DROP COLUMN
	ALTER TABLE DROP CONSTRAINT
	ALTER TABLE SET
	ALTER TABLE RENAME
	ALTER USER ADMIN
	ALTER USER RENAME
	ALTER USER SET PASSWORD
	ALTER VIEW
	ANALYZE
	COMMENT
	CREATE AGGREGATE
	CREATE ALIAS
	CREATE CONSTANT
	CREATE DOMAIN
	CREATE INDEX
	CREATE LINKED TABLE
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DROP AGGREGATE
	DROP ALIAS
	DROP ALL OBJECTS
	DROP CONSTANT
	DROP DOMAIN
	DROP INDEX
	DROP ROLE
	DROP SCHEMA
	DROP SEQUENCE
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	TRUNCATE TABLE
	COMMIT
	COMMIT TRANSACTION
	CHECKPOINT
	CHECKPOINT SYNC
	GRANT RIGHT
	GRANT ROLE
	HELP
	PREPARE COMMIT
	REVOKE RIGHT
	REVOKE ROLE
	ROLLBACK
	ROLLBACK TRANSACTION
	SAVEPOINT
	SET @
	SET ALLOW_LITERALS
	SET AUTOCOMMIT
	SET CACHE_SIZE
	SET CLUSTER
	SET COLLATION
	SET COMPRESS_LOB
	SET DATABASE_EVENT_LISTENER
	SET DB_CLOSE_DELAY
	SET DEFAULT_LOCK_TIMEOUT
	SET DEFAULT_TABLE_TYPE
	SET EXCLUSIVE
	SET IGNORECASE
	SET LOCK_MODE
	SET LOCK_TIMEOUT
	SET LOG
	SET MAX_LENGTH_INPLACE_LOB
	SET MAX_LOG_SIZE
	SET MAX_MEMORY_ROWS
	SET MAX_MEMORY_UNDO
	SET MAX_OPERATION_MEMORY
	SET MODE
	SET MULTI_THREADED
	SET OPTIMIZE_REUSE_RESULTS
	SET QUERY_TIMEOUT
	SET PASSWORD
	SET REFERENTIAL_INTEGRITY
	SET SALT HASH
	SET SCHEMA
	SET SCHEMA_SEARCH_PATH
	SET THROTTLE
	SET TRACE_LEVEL
	SET TRACE_MAX_FILE_SIZE
	SET UNDO_LOG
	SET WRITE_DELAY
	SHUTDOWN
	Comments
	Select Part
	From Part
	Constraint
	Referential Constraint
	Table Expression
	Order
	Expression
	And Condition
	Condition
	Condition Right Hand Side
	Compare
	Operand
	Summand
	Factor
	Term
	Value
	Case
	Case When
	Cipher
	Select Expression
	Data Type
	Name
	Alias
	Quoted Name
	String
	Dollar Quoted String
	Int
	Long
	Hex Number
	Decimal
	Double
	Date
	Time
	Timestamp
	Boolean
	Bytes
	Array
	Null
	Hex
	Digit
	Information Schema
	Range Table

	Functions
	Aggregate Functions
	Numeric Functions
	String Functions
	Time and Date Functions
	System Functions
	AVG
	BOOL_AND
	BOOL_OR
	COUNT
	GROUP_CONCAT
	MAX
	MIN
	SUM
	SELECTIVITY
	STDDEV_POP
	STDDEV_SAMP
	VAR_POP
	VAR_SAMP
	ABS
	ACOS
	ASIN
	ATAN
	COS
	COT
	SIN
	TAN
	ATAN2
	BITAND
	BITOR
	BITXOR
	MOD
	CEILING
	DEGREES
	EXP
	FLOOR
	LOG
	LOG10
	RADIANS
	SQRT
	PI
	POWER
	RAND
	RANDOM_UUID
	ROUND
	ROUNDMAGIC
	SECURE_RAND
	SIGN
	ENCRYPT
	DECRYPT
	HASH
	TRUNCATE
	COMPRESS
	EXPAND
	ZERO
	ASCII
	BIT_LENGTH
	LENGTH
	OCTET_LENGTH
	CHAR
	CONCAT
	DIFFERENCE
	HEXTORAW
	RAWTOHEX
	INSTR
	INSERT Function
	LOWER
	UPPER
	LEFT
	RIGHT
	LOCATE
	POSITION
	LPAD
	RPAD
	LTRIM
	RTRIM
	TRIM
	REGEXP_REPLACE
	REPEAT
	REPLACE
	SOUNDEX
	SPACE
	STRINGDECODE
	STRINGENCODE
	STRINGTOUTF8
	SUBSTRING
	UTF8TOSTRING
	XMLATTR
	XMLNODE
	XMLCOMMENT
	XMLCDATA
	XMLSTARTDOC
	XMLTEXT
	ARRAY_GET
	ARRAY_LENGTH
	AUTOCOMMIT
	CANCEL_SESSION
	CASEWHEN Function
	CAST
	COALESCE
	CONVERT
	CURRVAL
	CSVREAD
	CSVWRITE
	DATABASE
	DATABASE_PATH
	FILE_READ
	GREATEST
	IDENTITY
	IFNULL
	LEAST
	LOCK_MODE
	LOCK_TIMEOUT
	LINK_SCHEMA
	MEMORY_FREE
	MEMORY_USED
	NEXTVAL
	NULLIF
	READONLY
	ROWNUM
	SCHEMA
	SESSION_ID
	SET
	TABLE
	USER
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DATEADD
	DATEDIFF
	DAYNAME
	DAY_OF_MONTH
	DAY_OF_WEEK
	DAY_OF_YEAR
	EXTRACT
	FORMATDATETIME
	HOUR
	MINUTE
	MONTH
	MONTHNAME
	PARSEDATETIME
	QUARTER
	SECOND
	WEEK
	YEAR

	Data Types
	INT Type
	BOOLEAN Type
	TINYINT Type
	SMALLINT Type
	BIGINT Type
	IDENTITY Type
	DECIMAL Type
	DOUBLE Type
	REAL Type
	TIME Type
	DATE Type
	TIMESTAMP Type
	BINARY Type
	OTHER Type
	VARCHAR Type
	VARCHAR_IGNORECASE Type
	CHAR Type
	BLOB Type
	CLOB Type
	UUID Type
	ARRAY Type

	Build
	Portability
	Environment
	Building the Software
	Build Targets
	Using Maven 2
	Using a Central Repository
	Using Snapshot Version

	Translating
	Providing Patches

	History and Roadmap
	Change Log
	Roadmap
	History of this Database Engine
	Why Java
	Supporters

	Frequently Asked Questions
	Are there Known Bugs? When is the Next Release?
	Is this Database Engine Open Source?
	My Query is Slow
	How to Create a New Database?
	How to Connect to a Database?
	Where are the Database Files Stored?
	What is the Size Limit (Maximum Size) of a Database?
	Is it Reliable?
	Why is Opening my Database Slow?
	Is the GCJ Version Stable? Faster?
	How to Translate this Project?

